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ABSTRACT
In hyperspectral image analysis, one often assumes that ob-
served pixel spectra are linear combinations of pure substance
spectra. Unmixing a hyperspectral image consists in finding
the number of pure substances in the scene, finding their spec-
tral signatures and estimating the abundance fraction of each
pure substance spectrum in each spectral pixel. In this pa-
per, we show that the tensor Tucker decomposition could be
considered to solve this problem, and a preliminary problem
to overcome consists in estimating the 3 required data Tucker
ranks, corresponding to the 3 dimensions of the data cube.
Then, we propose an optimal method to estimate them.

Index Terms— Hyperspectral, Unmixing, Tensor, Ranks,
Non-negative Tucker Decomposition (NTD)

1. INTRODUCTION

Spaceborn and airborn hyperspectral sensors acquire radi-
ance images of a scene in hundreds of narrow and contiguous
spectral bands, simultaneously. Such data can also be de-
scribed as a collection of observed spectra contained in the
L-dimensional spectral pixels of the HyperSpectral Images
(HSIs). Thus, hyperspectral data contain two spectral dimen-
sions and one spectral one, and are generally contained in a
3-dimensional array.

1.1. Linear Spectral Mixing Model (LSMM)

It is often relevant to assume that the ith observed spec-
trum r

i is a linear mixture of the material spectra present
in the respective pixel coverage: r

i = As
i + n

i, where
A = [a1, . . . ,aJ ]. The L-dimensional column vectors
{aj}j=1...J

contain the sampled spectral signature of the
J pure materials constituting the observed scene, also called
endmembers. The column vector si = [s1i, . . . , sJi]

T holds
the set of abundance fractions and n

i is an additive noise
vector. For a set of mixed spectral pixels, this Linear Spectral
Mixing Model (LSMM) [1–3] can be written as follows:

R = AS + N = X + N . (1)

With such notations, the initial 3-dimensional data has been
rearranged into a matrix. The I columns of R contain the
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spectral pixels and the I columns of S hold their respective
sets of abundance fractions. Thus, the J rows of S are the
abundance maps corresponding to the endmembers. At last,
N is the noise matrix. We define:

X = AS (2)

as the signal matrix.
Obviously, the matricesA and S must satisfy three phys-

ical constraints induced by the LSMM model:

(C1) A must be non-negative;

(C2) S must be non-negative;

(C3) The columns of S must be summed-to-unity.

For practical purposes, A and S are generally unknown
and one would like to estimate them from R only, under the
LSMM assumption. This problem is called linear spectral un-
mixing. Among various strategies, a non-negative PARAFAC
decomposition has shown success in [4] to unmix hyperspec-
tral data. We believe that Non-negative Tucker Decomposi-
tion (NTD or HONMF for High Order Non-Negative Matrix
Factorization) algorithms [5, 6] could also unmix hyperspec-
tral data, finding a Tucker decomposition of the HSI such that
the core tensor and the flattening matrices have only positive
entries.

1.2. Tucker Decomposition

Let us consider a multidimensional matrix (or tensor) X ∈
�

I1×I2×···×IN . A Tucker decomposition approximates X as
follows:

Xi1,i2,...,iN
≈ Li1,i2,...,iN

= (3)∑
j1,j2,...,jN

Gj1,j2,...,jN
A

(1)
i1,j1

A
(2)
i2,j2

. . .A
(3)
i3,j3

where G ∈ �
J1×J2×···×JN is the core tensor and the matrices

A
(n) ∈ �

In×Jn are called the flattening matrices. Jn, n =
1, . . . , N are the Tucker ranks of the tensor X , which are in-
tegers such that 0 < Jn ≤ In, ∀n = 1, . . . , N . The Tucker
decomposition can equivalently be written as follows:

X ≈ L = G ×1 A
(1) ×2 A

(2) ×3 · · · ×N A
(N) (4)

1281978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



where the operator×n is the n-mode product given by:

(Q×n P)i1,i2,...,jn,...,iN
=

∑
in

Qi1,i2,...,in,...,iN
Pjn,in

(5)

One can rearrange the tensor X ∈ �
I1×I2×···×IN into a

matrix X(n) ∈ �
In×I1...In−1In+1...IN . Thus, (4) can equiva-

lently be unfolded as follows:

X(n) ≈ L(n) = (6)

= A
(n)

G(n)A
(N) ⊗ · · · ⊗A

(n+1) ⊗ A
(n−1) ⊗ · · · ⊗A

(1)

= A
(n)

S
(n)

where ⊗ denotes the Kronecker product. If positivity con-
straints are imposed on the flattening matrices and the core
tensor elements, the approximation (3) is called Non-negative
Tucker Decomposition (NTD) [5, 6].

1.3. Link between the LSMMmodel and the NTD decom-
position

A hyperspectral image can be assumed as a 3-dimensional
signal. Thus a non-negative hyperspectral tensor signal X ∈

R
(I1×I2×I3)
+ is approximated as follows:

X ≈ L = G ×1 A
(1) ×2 A

(2) ×3 A
(3) . (7)

From (6), one can equivalently unfold the tensor as follows:

X(3) ≈ L(3) = A
(3)

G(3)A
(2) ⊗ A

(1) = A
(3)

S
(3) . (8)

One can observe that the LSMM model (2) and the NTD
decomposition (8) can be identified, which shows that an
NTD algorithm could be used to perform spectral unmixing.
Table 1 summarizes the correspondances between the LSMM
model and the NTD decomposition. The existing algorithms

LSMM (2) NTD (8) Physical meaning
A A

(3) Columns: endmember spectra
S S

(3) Rows: abundance maps
- I1 Number of rows of the HSI
- I2 Number of columns of the HSI
L I3 Number of spectral bands
I I1I2 Number of spectral pixels
- J1 -
- J2 -
J J3 Number of endmembers

Table 1. Correspondance between the LSMM model param-
eters and the NTD parameters, and physical interpretations

that perform NTD satisfy the non-negativity of A
(3) and

S
(3). However, they require the a priori knowledge of the
hyperspectral Tucker ranks J1, J2 and J3 as input parameters,
which are unknown for practical purposes. In the following
section, we propose a method to estimate them.

2. ESTIMATION OF THE HYPERSPECTRAL
TUCKER RANKS

The proposed approach is a generalisation of the HySime al-
gorithm [2] to the Tucker decomposition. The first step con-
sists in estimating the signal tensor X from the observed ten-
sor R. The second step finds optimal n-rank (n = 1, 2, 3)
estimates.

2.1. Estimation of the signal tensor X

To estimate the signal tensor, we consider the 3-mode un-
folded hyperspectral image: R = R(3). The rows of R

hold the spectral bands. As they represent the same scene
in thin and contiguous spectral bands, one expects much re-
dundance among the spectral bands. Let us define R\l =[
rT
1,:, r

T
2,:, . . . , r

T
l−1,:, r

T
l+1,:, . . . , r

T
L,:

]T

, i.e. the matrix R but
the lth row. Thus, one can expect that the denoised spectral
bandXl,: is obtained by a combination of the remaining spec-
tral bands: Xl,: ≈ βT

l R\l. The (L-1)-dimensional vector βl

is a regression vector and its least square estimate is given by:

β̂l =
(
R\lR

T
\l

)−1

R\lX
T
l,: .

2.2. Rank estimations

This section explains how to estimate the rank of the n-mode.
First, let fix n = 1, 2 or 3.
The n-mode unfolded noise tensor is denoted by the ma-

trix N(n) = R(n) − X(n). We assume the columns of N(n)

are random In-dimensional centered vectors. The maximum
likelihood estimation of their covariance matrix is given by:

K̂n(n)
= N(n)N

T
(n)/In . (9)

The signal correlation matrix is estimated as follows:

K̂x(n)
= X(n)X

T
(n)/In . (10)

The eigen decomposition of K̂x(n)
can be written as:

K̂x(n)
= E

(n)Σ(n)
E

(n)T , (11)

where E
(n) contains the eigenvectors ordered by decreasing

magnitude of the respective eigenvalues. Thus R = Ek ⊕
E⊥

k , where Ek is the subspace of R spanned by the first k
eigenvectors. The purpose is to find the value Jn of k that
best imprisons the signal. As the data are unfolded in the n-
mode, In is the data dimension and Jn is the signal subspace
dimension, that is, the n-rank of the data tensor.

U
(n)
k = E

(n)
k E

(n)T
k is the projection matrix onto Ek and

let us define x̂
(n)
k = U

(n)
k r(n). It has been shown in [2] that
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the Mean Squared Error between x
(n) and x̂

(n)
k is given by:

MSE(n)(k|x(n)) = (12)

= E
[
(x(n) − x̂

(n)
k )T (x(n) − x̂

(n)
k )|x

]

= b
(n)T
k b

(n)
k + Tr

(
U

(n)
k K̂n(n)

U
(n)T
k

)
, (13)

where b
(n)
k = x

(n) − x̂
(n)
k = U

(n)⊥
k x

(n).
The n-rank Jn is the value of k whichminimizes theMSE.

Note that the first term in (13) represents the signal that is lost
with the projectionU

(n)
k and decreases when k increases. The

second term in (13) can be related to the amount of noise re-
tained in the signal subspace and increases with k. Thus, the
best trade-off between the two terms gives the n-rank. As this
method was initially proposed to estimate the number of end-
members in the data, it is now generalized to estimate optimal
Tucker n-ranks, n = 1,2 and 3 if the hyperspectral data are as-
sumed as tensors.

3. EXPERIMENTS

3.1. Synthetic data sets

We evaluated the method on two synthetic data sets. The first
one is a (30 rows × 50 columns × 148 spectral bands)-HSI
generated from J=3 endmember spectra. The abundancemaps
have been generated following Dirichlet probability density
functions to ensure the additivity constraint (C3). The sec-
ond considered synthetic HSI has the same dimensions, but
the spectral pixels have been generated from 5 endmembers.
We impaired the datasets with a gaussian white noise with
different Signal to Noise Ratio (SNR) values. The results of
the experiments are presented in Table 2. Remarks about this

SNR 20 dB 30 dB 40 dB
J3 Ĵ1 Ĵ2 Ĵ3 Ĵ1 Ĵ2 Ĵ3 Ĵ1 Ĵ2 Ĵ3

3 20 26 3 30 45 3 30 50 3
5 22 27 5 30 49 5 30 50 5

Table 2. Experimental results

experiment.
1.One can note that the 3-rank J3 is always correctly esti-

mated.
2. The optimal values of J1 and J2 (the ”spatial” ranks)

are more dependent of the endmember number and of the
SNR. More specifically, the 1-rank and 2-rank increase when
the number of endmembers or the SNR increase. In the case
of visible and near infra-red wavelength real HSIs, the noise
is generally low and the corresponding scene is more complex
than a five endmember-based scene. Thus, we can expect the
optimal spatial ranks (1 and 2) to be equal to the HSI spatial
dimensions.

Fig. 1. True color image of the considered scene

3.2. Real data set

We performed the Tucker rank estimation on a real-world HSI
of a desert scene, from the well known HYperspectral Digital
Imagery Collection Experiment (HYDICE). Only 167 out of
210 initial spectral bands have been kept, others suffer from
low Signal to Noise Ratios (SNR) due to atmosphere absorp-
tion. Thus, the considered HSI dimensions are 150 × 150 ×
167. The estimated Tucker Ranks are: J1 = 150, J2 = 150
and J3 = 20. As expected: the spatial ranks are equal to the
respective dimensions, and the scene contains 20 pure sub-
stances.

4. CONCLUSION

In the framework of Hyperspectral Image (HSI) analysis, the
studied HSI is often reshaped into a matrix before processing,
and it is consequently hard to consider spatial assumptions
in the process. In addition, non-negative tensor decompo-
sition methods are of growing interest and can be appropri-
ate tools for HSI analysis. Especially, we show in this paper
how the non-negative Tucker decomposition is expected to
unmix hyperspectral data. Nevertheless, the Tucker n-ranks
of the data are required input parameters in existing Tucker
decomposition algorithms. In this paper, we proposed to esti-
mate the Tucker ranks of the hyperspectral data. The method
generalizes to tensors an efficient rank estimator dedicated to
matricizing-based analysis algorithms. As the Tucker ranks
are required for Tucker-based HSI analysis, it is know pos-
sible to adapt the non-negative Tucker decomposition algo-
rithms to HSI analysis and this point will be the subject of
further works.
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