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ABSTRACT

We present a new similarity invariant signature for space curves.
This signature is based on the information contained in the turning
angles of both the tangent and the binormal vectors at each point on
the curve. For an accurate comparison of these signatures, we define
a Riemannian metric on the space of the invariant. We show through
relevant examples that, unlike classical invariants, the one we define
in this paper enjoys multiple important properties at the same time,
namely, a high discrimination level, independence of any reference
point, uniqueness property, as well as a good preservation of the cor-
respondence between curves. Moreover, we illustrate how to match
3D objects by extracting and comparing the invariant signatures of
their curved skeletons.

Index Terms— Space curve, similarity invariant, turning angle,
curvature, torsion.

1. INTRODUCTION

Multiple 3D modeling methods use spatial curves for recognition
and matching of objects. Spatial curves are exploited in different
configurations. They may, for instance, be extracted as contours of
landmark surfaces [1], as level curves of a Morse function [2], or
also as elements of curved skeletons [3, 4]. All these techniques, de-
spite their differences, agree in relying on curves’ properties in solv-
ing computer vision problems. This common approach is motivated
by the fact that curves in 3D are fairly well known geometric enti-
ties; moreover, under some conditions, they can accurately describe
the overall geometry of an object in 3D space [1]. Translating the
constraints of 3D shape representation techniques to curves reduces
the level of difficulty associated with the representation problem and
makes it more tractable.
Pose invariance of surfaces is a common requirement in object mod-
eling. It is also a good illustration of the simplification from surfaces
to curves. Indeed, an effective and economical solution for curves
pose invariance may be provided through Euclidean/similarity in-
variants or invariant signatures [5]. Besides this pose invariance
property, additional constraints are imposed on 3D curves as a di-
rect result of the nature of 3D shape recognition applications. These
constraints may be summarized as follows: invariance to a group of
transforms, uniqueness, local characterization (local support), abil-
ity to determine shape properties such as symmetries and part cor-
respondences. To the best of our knowledge, none of the available
references seem to gather all these properties at once. The most
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complete work is the one of Mokhtarian and Bober [1], as they suc-
ceed in citing and addressing all the necessary properties; however,
to provide an invariance to scaling transforms, the authors use a
multi-resolutional procedure. In the present work, we provide the
advantage of having an invariant that is, by definition, i.e., without
additional steps, fully invariant to all similarity transforms. The key
contribution of our work resides in using turning angles based on
curvature and torsion instead of using curvature and torsion directly.
We further ensure a natural registration of all the invariants on one
curved space which leads to defining an accurate and computation-
ally easy metric for curves comparison. Indeed, we show that while
torsion and curvature are clearly variant with scaling, turning angles
are not. The first inspiration of our work comes directly from [6],
where an invariant for planar curves is defined. This invariant has
the particularity to be an information theoretical measure of local
geometric properties of curves. Moreover, this invariant comes as a
proof for longtime psychological assumptions on mental shape per-
ception. The operation of comparing invariants, although often over-
looked, is crucial in assessing the properties of the invariant, and ac-
curately achieving recognition operations. This is why, in the present
work, we complete the proposed invariant signature by defining its
Riemannian space equipped with an intrinsic measure.

We start this paper by reviewing, in Section 2, important geo-
metric and information theoretic notions used throughout this work.
We briefly cover the work of Feldman and Singh [6] in Section 2.3
as it was the precursor and the inspiration for the present effort. In
Section 3, we introduce our new invariant signature for space curves
and define a Riemannian metric for the comparison of the invariant
signature curves. Finally, in Section 5, we support our theoretical
claims through relevant experimental examples.

2. BACKGROUND AND FORMULATION

2.1. Turning angles

A space curve is uniquely determined, up to a Euclidean transform,
by its curvature function κ(t), and torsion function τ(t), both con-
tinuous functions of the parameter t; hence, we naturally use these
measurements to define an adequate invariant signature curve; how-
ever, since we target the group of similarity transforms, and knowing
that curvature and torsion are not scale invariant, we use turning an-
gles as the geometric features describing space curves [6]. In what
follows, we show how it is possible to relate curvature and torsion as
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Fig. 1. Manifold defined by the invariant signature curve as defined
in (9).

linear functions of turning angles. Using the Frenet-Serret formulae:

dT
dt

= κN, (1)

dN
dt

= −κT + τB, (2)

dB
dt

= −τN, (3)

where T, N and B are the tangent, the normal and the binormal vec-
tors, respectively, we define two turning angles αT and αB . αT is
the change in the direction of T, and αB is the change in the direc-
tion of B such that: αT (t) ≈ κ(t) · dt and αB(t) ≈ τ(t) · dt.

2.2. Shannon surprisal

We extract the information contained in the proposed turning angles,
i.e., our chosen geometric measures, by using a notion in information
theory known as “Shannon surprisal” [7, 6]. We assume α(t) to fol-
low, without loss of generality, a von Mises distribution with a zero
mean and a spread parameter b equal to 1. We then define the prob-
ability density function of α(t) as fα (α(t)) = A exp (cos(α(t))),
for all t, with α ∈ [−π,+π] and A = 1

2π·Bessel(0,b)
. Bessel(0, b)

being the Bessel distribution of mean 0 and variance b. The surprisal
of α(t) is by definition:

θ(t) = − ln (fα (α(t)))

= − ln(A) − cos(α(t)) ∀ t. (4)

2.3. Invariant signature for planar curves

In [6], Feldman and Singh present an invariant signature for planar
curves. This invariant is based on the turning angle α(t), the change
in the direction of the tangent vector at the instant t. The actually
considered invariant signature is the information gained when mea-
suring α(t) at all instants t. This exactly corresponds to θ(t), the sur-
prisal of α(t) as defined in (4). For a simple planar curve of length
L sampled at N equal intervals of arc length Δt, α(t) is related to
the curvature κ(t) at a given point by the following approximation
α(t) ≈ κ(t) · Δt. We note that scaling the curve implies scaling

(a) (b)

Fig. 2. Two different sets of synthetic space curves. In (a), T1 and
T2 are two similarity transforms. In (b), C1, C2 and C3 are three
similar curves except at one inflection point.

both κ(t) and L while keeping the value of κ(t) L
N

invariant. It thus
follows that α(t) is a measure equivalent to κ(t) except that it is
scale-invariant.

3. INVARIANT SIGNATURE FOR SPACE CURVES

In our case, we deal with space curves instead of planar curves. For
this reason, we require two turning angles (αT and αB) versus one in
the planar case; hence, we naturally use these two measurements to
define an adequate invariant signature curve. Now, instead of sepa-
rately considering the marginals of two random variables αT (t) and
αB(t), we define a third invariant term that considers the random
vector [αT (t), αB(t)]T . Thus, the distribution fα of interest be-
comes the binary von Mises distribution of the independent variables
αT (t) and αB(t), such that:

fα(αT (t), αB(t)) = A2 exp(cos(αT (t)) + cos(αB(t))). (5)

The corresponding surprisal function θ(αT (t), αB(t)) ≡ θ(t) be-
comes θ(t) = − ln (fα(αT , αB)) .Thatisθ(t) = −2 ln(A) −
cos(αT (t)) − cos(αB(t)), with(αT (t), αB(t)) ∈ ([−π, π])2. The
range of the new function θ(·) constitutes a curved space, as shown
in Fig. 1. All the invariant signatures are constrained to live on
this space. Moreover, defining this space provides a natural way to
register all the signatures. The only case for which two non identical
space curves are going to have identical signatures is when curves
are periodic with the same period, but with different lengths. To
compare two given curves γi and γj , we compare their invariants.
The invariant we defined in (12) is a signature curve embedded in
the curved space created by the two variables αT and αB (Fig. 1).
All the invariant signature curves that we are to compare are thus
constrained to live on the defined invariant space that we call T .
Defining a space T that holds all the possible invariants is a natural
way to register them. As a consequence, we may directly apply a
distance measure to compare these invariant curves without worry-
ing about ensuring a prior registration. We thus choose to compare
two invariant curves γ1 and γ2, corresponding to two space curves
C1 and C2, by considering the oriented curve γ

Δ
= γ1 − γ2. We

use tools from measure theory and choose to refer to their physical
intuition in relating them to our problem [8]. We start by viewing the

oriented version of the space T as a vector field
−→
F on the (2π×2π)

plane defined by the variables αT and αB . We directly relate
−→
F to
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Fig. 4. Invariant signatures γ1, γ2 and γ3 for the curves C1, C2,
and C3 of Figure 2 (b).

θ(t), and define it as follows:

−→
F : ([−π, π])2 → R

2

(αT , αB) �→ − ln (fα(αT ))
−→
i − ln (fα(αB))

−→
j .

We also define γ∗
Δ

; the projection of γ
Δ

on the (2π)2 plane. γ∗
Δ

is

a 1-current in the space dual to the space of 1-forms D1([−π, π])2.

This means that if we consider
−→
F (t) ≡ −→

F (αT (t), αB(t)) and for
all φ from D1([−π, π])2,

γ∗
Δ

(φ) :=

Z
γ∗
Δ

φ, (6)

=

Z
γ∗
Δ

φ(
−→
F (t)) dt. (7)

With these notions of measure theory, we naturally use the flat norm
F(γ∗

Δ
) as the intrinsic distance between two curves C1 and C2

whose invariants are γ1 and γ2, respectively. We thus may write,

D

“
C1, C2

”
= F

“
γ∗1 − γ∗2

”
, (8)

:= sup{γ∗
Δ

(φ) : ‖dφ‖ � 1 for all ‖φ‖ � 1},(9)

where γ∗
Δ

=
“
γ∗1 − γ∗2

”
.

4. APPLICATIONS AND EXPERIMENTAL RESULTS

In order to investigate and check the properties of the proposed space
curve representation we use synthetic space curves and simulate dif-
ferent scenarios. In Fig. 2 (a), we test the first property of indepen-
dence to pose (translations and rotations) and scaling. We note that
all the curves, except C2, are similar to C1. We find two sets of
invariants as shown in Fig. 3. Those corresponding to the family of

(a)

(b)

Fig. 5. Turning angles for the space curves of Figure 4 (b).

C1 are represented in red. Those in green are for the curve C2. This
characterization into two groups confirms the invariance of the turn-
ing angle measures to the group of similarity transforms. We use the
curves illustrated in Fig. 2 (b) to test a tricky case where local versus
global representations are confronted. The objective of this experi-
ment is to check whether the proposed signatures are able to locate
the inflection points causing the dissimilarities between the proposed
curves. In Fig. 5 (a) and (b), we observe overlaps and symmetries
between some parts of the turning angles. This observation exactly
translates what is happening at the curves level because of the effect
of the inflection points. The actual signature curves sitting on the
space T are shown in Fig. 4. We further apply these signature in-
variant curves to compare 3D shapes through their curved skeletons
that we defined in [4] and illustrated in Fig. 6. The particularity of
these skeletons is that they have spatial curves replacing their edges.
These characteristic curves are new means to compactly carry the

(a) (b) (c) (d)

Fig. 6. Comparison of the 3D objects in (a) and (c) using their curved
skeletons in (b) and (d), respectively.
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(a) (b) (c) (d)

Fig. 3. Invariants for the space curves of Figure 4 (a). (a) and (b) correspond to turning angles of the binormal vectors. (c) and (d) correspond
to turning angles of the tangent vectors. In red are the signature curves for C1’s family. In green are the ones for C2.

geometric information of 3D shapes. In Fig. 6 we illustrate a typical
example for which the practical importance of the proposed invari-
ant signature becomes obvious. The 3D shape comparison technique
simplifies to comparing the signatures of the edge curves with the
same colors in Fig. 6. For these skeletons, we define a new global
metric based on Eq. 8. So we consider that C1 and C2 are now two
sets of curves in 3D such that each set contains N curves Ci

1 and
Ci

2, i = 1, · · · , N , respectively representing the geometrical shapes
of the 3-dimensional parts Si

1 and Si
2, i = 1, · · · , N , that constitute

each 3D object. We define in (10) the new distance between the two
sets C1 and C2, which is also the distance between the correspond-
ing objects S1 and S2. We show in Fig. 7 the results of using this
distance in comparing six different subjects.

D

“
C1, C2

”
=

1

2

NX
i=1

 
area

“
Si

1

”
area

“
S1
” +

area
“
Si

2

”
area

“
S2
”
!

· D

“
Ci

1, C
i
2

”
.

(10)

5. CONCUSION

In this paper, we presented a new similarity invariant signature for
space curves. This invariant, since based on the tangent and the
binormal turning angles, has the advantage of being local, unique
and fully invariant to similarity transforms. The proposed invariant
proves to be very practical to use in 3D shape modeling/comparison
problems.
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