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ABSTRACT

Hyperspectral image analysis has been subjected to many im-

provements made in past decade. Yet the accurate estimation

of dimensionality is still a challenge. Since dimension estima-

tion of the Hyperspectral data is the first step in analysis of an

image, the accuracy of analysis results highly depends on the

accuracy of the dimension estimation step. Mostly, existing

methods isolate the process of dimension estimation and pro-

cess of denoising which leads to an inaccurate estimation of

constituent components in the signal. In this paper, the prob-

lem of estimating the dimensionality of Hyperspectral data

using the concept of ”noiseless code length” is addressed. In

our proposed method, NCLM, a set of nested subsets includ-

ing the Hyperspectral data is generated first and then an error

comparison approach is utilized by estimating the noiseless

data error rather than noisy data error used by the existing

methods to find the optimum subset. It has been shown that

the estimated noiseless error has a minimum that represents

the accurate estimation of the dimensionality of Hyperspec-

tral data. The comparison of NCLM to other methods shows

a substantial improvement in estimation of dimensionality in

Hyperspectral imagery.

Index Terms— Hyperspectral imaging, Dimension esti-

mation, Subspace selection, Denoising

1. INTRODUCTION

Estimation of the number of signal sources in a Hyperdata

cube is very challenging. According to the definition, the ef-

fective dimensionality, is the minimum number of parameters

required to account for the observed properties of the data. It

is difficult to determine the effective dimensionality of Hy-

perspectral data in practice. This is mainly because effective

dimensionality cannot be simply determined by the dimen-

sionality of a data sample vector, referred to as component di-

mensionality(which is defined by the number of components

in a data vector). For Hyperspectral data, the effective di-

mensionality is in general much smaller than the component

dimensionality due to the high-dimensional structure of data

cube. Several methods have been proposed such as princi-

pal components analysis (PCA) [5] and factor analysis [6]

which make use of the eigenvalue distribution to determine

the effective dimensionality. These approaches were basi-

cally developed for multispectral imagery with small limited

number of bands where component dimensionality is compa-

rable to the effective dimensionality. Also the application of

sample correlation matrix is questionable knowing that hyper-

spectral data is not necessarily stationary with spacial varia-

tion. Some other SVD based dimension estimation methods

are also in some cases inefficient since the noise present in

most hyperspectral data sets is not i.i.d. and, thus, the signal

subspace is no longer given by the span of the first ”p” sin-

gular vectors nor by any other set of eigenvalues. Harsanyi,

Farrand, and Chang [4] developed a Neyman-Pearson detec-

tion theory-based thresholding method (HFC) to determine

the number of spectral endmembers in hyperspectral data (re-

ferred to as virtual dimensionality in [3]). The HFC method

uses the eigenvalues to measure signal energies in the de-

tection model. All these methods are again using either the

eigenvalue distribution concept or the sample correlation ma-

trix calculation to reach the dimensionality. In both cases the

base theory and assumptions is not quite valid for Hyperspec-

tral data. In this paper we propose a method based on the con-

cept of ”noiseless code length” and reconstruction error. We

will show that this method is able to overcome the inaccuracy

resulted from the preliminary assumptions made in most ex-

isting methods. Also we will show that NCML method is able

to simultaneously denoise the noisy Hyperspectral data.

1.1. Mathematical model
We consider a Linear mixture model due to its effectiveness

and simplicity. Observation data in this model for each pixel

is formulated as:

ȳi(n) = A si (1)

yi(n) = ȳi(n) + wi (2)

where the elements of yi(n) and ȳi(n) both ∈ RN are the

noisy measured solar radiation signal and the original noise-

less solar signal at different spectral bands respectively.

A = [a1 a2 ... ac] is a N ×c source matrix (or material signa-

ture matrix) with each column aj being the spectral signature

of Endmember j. The abundance vector s ∈ Rc consists

of the mixing coefficients satisfying two physical constraints
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sj ≥ 0 (non-negative) and
∑c

j=1 sj = 1 (sum-to-one), and

c is the number of Endmembers. The last term wi takes into

account possible errors and sensor noises. We will considered

an additive white Gaussian noise(AWGN). The noisy data

y(n) of length N is available from sensors output. The addi-

tive noise w(n) is a sample of the zero mean random variable

W (n) with variance σ2
w. The goal is to estimate the number

of constituent independent spectral signals, c. Assume that

the noiseless data belongs to the space SN , ȳN ∈ SN (for ex-

ample if the elements of ȳ are real, one choice is SN = RN ).

The orthonormal basis vectors s1, s2, · · · , sN span the space

SN . The noiseless data is represented by this basis as follows:

ȳN =
N∑

i=1

θ∗(i)si (3)

where ȳN = [ȳ(1), ȳ(2), · · · , ȳ(N)]T and θ∗(i) is the ith co-

efficient of the noiseless data.

The least square error estimate of the ith basis coefficient

using the observed data is :

λ(i) = < si, y
N > (4)

= θ∗(i)+ < si, w
N > (5)

where yN = [y(1), y(2), · · · , y(N)]T and wN = [w(1), w(2),
· · · , w(N)]T . The main challenge of signal denoising is how

to decide which of the estimated coefficients, λ(i)s, should

be ignored (set to zero) and which of them should be used to

represent the noiseless data. Consider Sm, a subspace of SN

which is spanned by m elements of the basis. The estimate of

noiseless data in this subspace is

ŷN
Sm

=
N∑

i=1

θ̂Sm
(i)si (6)

where for the estimated coefficient θ̂Sm(i) we have

θ̂Sm
(i) =

{
λ(i) if si ∈ Sm

0 otherwise
. (7)

The denoising question and the dimensionality estimation is

the process of finding a subspace Sm( and therefore which

ŷN
Sm

∈ Sm) that best represents the noiseless data. Index m
then would be the dimension of the Hyperspectral data. Two

important elements in analyzing the denoising problem are

the following errors

Data error : xSm
=

1
N

||yN − ŷN
Sm

||22, (8)

Reconstruction error : zSm
=

1
N

||ȳN − ŷN
Sm

||22. (9)

The (noisy) data error, xSm
, is the distance between the noisy

observed data and its projection on subspace Sm. This error

is available for each subspace. However, the noiseless data

error, zSm (reconstruction error) is not available since it is a

function of the unknown noiseless data.

2. NCLM ANALYSIS

The probability density function of the noisy data in Eq.2 is:

f(yN ; ȳN ) =
1(√

2πσ2
w

)N
e
− ||y

N−ȳN ||22
2σ2

w (10)

where yN is a sample of random variable Y N . For gN , any

sample of random variable Y N , the Shannon code is used.

Therefore, the codelength of the binary prefix code is:

DL(gN ; ȳN ) = − 1
N

log2(f(gN ; ȳN )) (11)

= log2

√
2πσ2

w +
||gN − ȳN ||22

2σ2
wN

log2 e. (12)

This denotes the description length of gN when it is described

by the noiseless data ȳN . In each subspace Sm the best repre-

sentative of the noiseless data is ŷN
Sm

in Eq. 6. For the random

variable generated by this representative of ȳN Shannon code

is used. Therefore, the codelength of gN , using this represen-

tation is

DL(gN ; ŷN
Sm

) =

log2

√
2πσ2

w +
||gN − ŷN

Sm
||22

2σ2
wN

log2 e. (13)

The codelength of the noisy data using the estimate ŷN
Sm

in

different subspaces is:

DL(yN ; ŷN
Sm

) = log2

√
2πσ2

w +
log2 e

2σ2
w

xSm
. (14)

For nested subspaces of different order, the data error, xSm ,

is a decreasing function of order m and is zero in SN . There-

fore, comparison and minimization of this codelength for a

set of nested subspaces always leads to choosing the sub-

space with highest order, SN . The comparison of this error

fails since the noisy data is used to provide the estimate ŷN
Sm

,

and then the estimate is used to describe the same noisy data.

However, it is reasonable to use the noisy data once to pro-

vide the estimate ŷN
Sm

and then use this estimate to describe

the ”noiseless data”. The description length of the noiseless

data in subspace Sm, using ŷN
Sm

, is:

DL(ȳN ; ŷN
Sm

) = log2

√
2πσ2

w +
log2 e

2σ2
w

zSm
. (15)

The new minimum description length is obtained for Sm∗

when the following holds :

Sm∗ = arg min
Sm

DL(ȳN ; ŷN
Sm

). (16)

In order to compare the new description lengths, the noise

variance and the reconstruction errors zSm
are needed. Our
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goal is to minimize the reconstruction error. As proved in [1],

ZSm and XSm have the following expected values:

E(XSm
) = (1 − m

N
)σ2

w +
1
N

||ΔSm
||22 (17)

E(ZSm
) =

m

N
σ2

w +
1
N

||ΔSm
||22 (18)

where ||ΔSm ||2 is the l2-norm of the vector of discarded

coefficients in subspace Sm. Given the noisy data xSm
, one

sample of the random variable XSm
is available. The variance

of this random variable is of order 1
N of its expected value.

Therefore, if the length of data is long enough, the variance of

this random variable is close to zero. In this case, one method

of estimating ||ΔSm ||22 is to assume that the available sample

xSm
is a good estimate of its expected value in Eq. 17:

1
N

||Δ̂Sm
||22 ≈ xSm

− (1 − m

N
)σ2

w. (19)

When m increases, first and second terms in Eq. 18 grow in

different directions which results in an optimum point:

c = m∗ = arg min
m

{m

N
σ2

w +
1
N

||ΔSm
||22} (20)

c is the number of constituent Endmembers or in another

word the key to the dimensionality of the Hyperspectral data.

The data subset with index m∗ is actually the denoised ver-

sion of the noisy signal.

3. SIMULATION RESULT

The spectral reflectance used in the subsequent experiments

are selected from the USGS digital spectral library which con-

tains 224 spectral bands covering wavelengths ranging from

0.38 m to 2.5 m. A set of spectral profiles are selected as the

Endmembers to create the mixture. To create linear mixtures,

we randomly selected positive abundance vectors followed

by multiplying them to spectral Endmembers and adding a

Gaussian noise with SNR=10. The resulting image is then

degraded by a spatial k × k average filter to produce mixed

pixels(k controls the degree of mixing). With a small k, only

the pixels close to the block boundary are mixed, so the mix-

ture data are very likely to contain pure pixels. We consider

10 Endmembers from USGS library to create the signal. Fig-

ure 1 shows both created noiseless and noisy signals corre-

sponding to the first spectral band for 3136 pixels in the im-

age. To start the subset analysis, we created the first subset

by assuming only two Endmembers in the subset and used

an existing projection method [2] to estimate these two End-

members. Further we calculated the data error and recon-

struction error, zSm
, using the extracted Endmembers. Sec-

ond subset was created using these two Endmembers plus a

Fig. 1. Noiseless and noisy signal corresponding to the first

spectral band

Fig. 2. Estimation of dimensionality a)SNR=15, b)SNR=10 ,

c)SNR=7 , d)SNR=5

new Endmember that will be estimated again using the pro-

jection method. In each step reconstruction error is calculated

and plotted. Figure 2(a) shows how number of Endmembers,

c, changes with the subset index m. It is clear that zSm
has

a minimum in m = 10 which is compatible with the original

number of Endmembers we selected at the beginning. The

descending part of the zSm graph is mainly due to the term

||ΔSm
||22 and the ascending part is due to the term m

N σ2
w. As

a result, NCLM for this case is able to predict the dimen-

sionality of the Hyperspectral data precisely. To check the

robustness of NCLM to the noise power, we have created the

nosiy signal with different SNR values and in each step we

have calculated the minimum point of reconstruction error. It

can be seen in Figure 2 that for all SNR values of 15, 10, 7

and 5, NCLM is accurately estimating m∗ = c = 10 which is

the original dimensionality of the data.

Further to investigate the robustness of the system to the

number of constituent components in the signal, four different
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Fig. 3. Estimation of dimensionality a)c=20, b)c=15 , c)c=10

, d)c=5

set of Hyperspectral data were created with original number

of Endmembers equal to c = 20, 15, 10, 5. In each case the

minimum point of zSm was calculated and matched with the

dimensionality of the corresponding data. Figure 3 shows that

NCLM is accurately predicting the dimensionality for c =
15, 10 but is overestimating the dimensionality for the case

of c = 5 and underestimating for the case of c = 20. This

is mainly due to the fact that for these two specific cases the

number of original constituent components from both end of

the set of 25 Endmembers is too low(in fact either m or N−m
is too low). This causes the estimations used in Equation 19

not to be accurate any more. Further calculations showed that

the minimum number of constituent components from each

end of the set in the signal needs to be at least 7 for NCLM to

be accurate.

To compare NCLM with other methods, we have selected the

most common used methods, Sample Correlation method and

Virtual Dimensionality(VD) method, as reference. First we

generated mixed data including specified number of USGS li-

brary spectrum data as the constituent Endmembers. We then

used each method to estimate the dimensionality of mixed

data. Figure 4 shows the results. As it is shown, NCLM is the

most accurate among the three methods used. Specifically,

as it was discussed before in mid-ranges, NCLM is precisely

estimating the dimensions while VD and correlation based

method are both underestimating the dimensionality. Corre-

lation method is only showing a better estimation for number

of Endmembers c < 5.

4. CONCLUSION

A method was proposed to estimate the dimensionality of the

Hyperspectral data based on the concept of noiseless code

length in different subsets. It was explained that the com-

Fig. 4. Estimation of dimensionality a)c=20, b)c=15 , c)c=10

, d)c=5

parison of the error in each subset based on the noisy signal

would fail and therefore it is reasonable to use the concept of

estimated ”noiseless data error”. In other word, the process of

denoising and dimension estimation should be implemented

in parallel in order to get an accurate result and that is what

most of dimension estimation methods are lacking. It was

shown that NCLM is highly robust to the noise level and pre-

cisely estimates the dimensionality assuming that the number

of constituent Endmembers is not quite low. At the same time

NCLM does the denoising since it finds the optimum subset

that best represents the signal. As a future work, some im-

provements on the very low dimensional cases using different

distributions rather than chi-square is proposed.
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