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ABSTRACT 

 

In this paper, we propose a novel compressive imaging framework 
for color images. We first introduce an imaging architecture based 
on combining the existing single-pixel Compressive Sensing (CS) 
camera with a Bayer color filter, thereby enabling acquisition of 
compressive color measurements. Then we propose a novel CS 
reconstruction algorithm that employs joint sparsity models in 
simultaneously recovering the R, G, B channels from the 
compressive measurements. Experiments simulating the imaging 
and reconstruction procedures demonstrate the feasibility of the 
proposed idea and the superior quality in reconstruction. 
 

Index Terms— Compressive Sensing, Bayer Color Filter, 
Joint Sparsity Models, l1-Minimization. 
 

1. INTRODUCTION 
 

Modern digital cameras acquire an image in the form of millions of 
“pixels” and subsequently use transform coders like a JPEG or 
JPEG-2000 to reduce the data-rate for transmission or storage. In 
recent years a new signal acquisition theory known as Compressive 
Sensing (CS) has emerged, which provides a method for acquiring 
and compressing data simultaneously. According to CS, only  
(with ) non-adaptive linear measurements of a -sparse 
signal of  samples contain sufficient information for perfect 
reconstruction using non-linear optimization methods, provided 
that some conditions are satisfied [1,2]. Formally, let be a 
real-valued signal that has sparse representation in a basis 

 (assume orthonormal for convenience). Suppose that we 
have a sensing system , with  such that  and 

 are incoherent, then from a measurement of  defined as, 
   

                        (1) 
 

one can recover  from  as long as the number of measurements 
 is of the order of , where is the sparsity of  in 

the basis  (i.e,  is the number of non-zero values in , 
). The reconstruction is based on l1 optimization: 

 
         (2) 

 
In the case of color imaging, one naïve approach would be to 
measure and reconstruct the R,G and B planes separately. This 
approach nevertheless cannot adequately exploit strong correlation 
among the color channels. Considering this fact and the reality of 
the wide-spread use of the Bayer filter in color imaging, in this 
paper we first introduce an imaging architecture for the acquisition 
of compressive color measurements based on combining the 
“single-pixel camera” [3] with a Bayer color filter. Then we 
propose a novel CS reconstruction algorithm that employs joint 

sparsity models in simultaneously recovering the R, G, B channels 
from the compressive measurements. We design experiments to 
evaluate the performance of the proposed algorithm. The results 
show that our method is able to produce significant improvement 
in reconstruction, compared with the naïve approach of processing 
the R, G and G channels separately. 
  

The remaining of the paper is organized as follows. Section 2 
introduces the architecture for compressive color imaging based on 
the single-pixel camera of [3]. Section 3 presents the proposed 
reconstruction algorithm. Section 4 provides our experimental 
results. We conclude with discussion on future work in Section 5.  

 
2. A CS COLOR CAMERA ARCHITECTURE  

 

For clarity and completeness, we first briefly review the working 
principle of the CS-based single-pixel-camera of [3] (more details 
can be also found in [4,5]). Refer to Fig. 1, ignoring the rotating 
color filter for the moment. Lens 1 captures an image of the scene 
on the digital micro mirror (DMD) array. With the help of pseudo-
random number generator (RNG), randomly selected mirrors of 
DMD are oriented in a direction towards lens 2 (a “1”), while the 
rest are oriented in a different direction (a “0”). The net-effect is 
that the photodiode captures the summation of the light photons. 
This process can be interpreted as obtaining measurement 

of Eqn. (1) ( ), as an inner product between the 
random vector  (RNG configuration of 1s and 0s) and 
actual image . Here can be considered as rows to form 
the random measurement matrix ( ). 
By simple calibrations,  can be changed to other random 
structures of like -1/+1 etc [5]. 
 

We now introduce a simple way of extending the above single-
pixel camera with a virtual Bayer filter for compressive acquisition 
of a color image. The basic idea is illustrated in Fig. 1. Fig. 1(a) 
shows the mosaic structure of the Bayer filter. In Fig. 1(b), the 
mirrors and the rotating color filter (RCF) are synchronized to 
allow the acquisition of the R, G and B pixels with a pattern 
corresponding to that of the actual Bayer filter. The RNG further 
allows random measurements of the R,G and B planes and can be 
configured seperately. Note that the G mirrors are explicitly 
labeled as G1 and G2, and we capture two separate measurements 
for G plane. Specifically, referring to Fig. 1(b), we explain the 
steps to capture the R plane (G1, G2 and B are similar to this). 
First, the Rotation Control ensures that the red portion of RCF is 
positioned between lens 1 and the DMD array and that only the R 
mirrors operate, while G1, G2 and B mirrors are turned off. 
Second, the RNG randomly chooses some R mirrors to point 
towards lens 2 and the rest away from it (this is the vector

). After repetitions we get, the measurement vector  as, 
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where, is the random 
measurement matrix and  is sub-sampled image , with only 
samples retained from the alternate locations corresponding to the 
mosaic cell “R” of the Bayer filter. Mathematically we denote such 
a mapping function as or  , with 

and . We can define similar mapping functions 
and for B, G1 and G2 respectively. We call this “Bayer 

Measurement” and the process can be described by the following 
set of equations, 

 
 
 
 

For color imaging, the Bayer filter compressive measurements are 
more efficient, since they reduce (i) the data-rate, exploiting the 
correlation between R-G-B pixels and (ii) acquisition time per 
color image. Note that this architecture is just a conceptual design 
and there may be more efficient ways of implementing a Bayer 
filter, depending on practical feasibility and costs. In addition, if 
the acquisition data rate or time is not a constraint, one could also 
obtain full R, G, B measurements using the RCF (i.e., forgoing the 
Bayer mosaic and capturing full R-G-B measurements). However, 
our main focus in this paper is to present an efficient color-image 
CS reconstruction scheme (Section 3), operating on reduced 
measurements captured with a Bayer filter, and thus we will 
assume that the data are acquired as discussed above. 
 

3. PROPOSED RECONSTRUCTION ALGORITHM 
 

With the compressive color measurements taken as discussed 
above, we now propose a CS approach for the reconstruction of the 
original color image, exploiting the inter-correlations among the R, 
G and B planes. The objective is to achieve better quality for the 
reconstructed images, compared to individually reconstructing the 
R, G, B images. To this end, we first present a baseline algorithm 
(Section 3.1) based on simple extension of the joint sparsity 
models (JSM) that has been proposed in the context of distributed 
compressive sensing of 1-D multi-sensor signals [6]. To fully 
utilize the specific inter-pixel relationship arising from the Bayer 
mosaic, in Section 3.2, we propose an extended JSM that aims at 
accounting for the spatial shift of the R, G, and B pixels.  
 

 
 
3.1. Joint R-G-B Reconstruction: A Baseline Algorithm  
 
Let  and  be the raw R, G and B images, and  
and be their transform coefficients (in a basis ). Similar 
to [6], we assume the following simple additive model, 

 
 

 

where,  is a sparse component, common to  
and derived from a common support  (of non-zero 
coefficients), with cardinality . Further,  ,  and  are the 
sparse innovation components that are unique to each image.  If we 
let the sparsities of these components as  

 and that of original images as,

, then, the joint representation of 

 and , denoted as  has sparsity 

, while the independent representation has a 
total sparsity of  . Since  and  are 
sufficiently correlated, many coefficients in  and from 
support  would be equal with high probability (or bounded within 
a small value  in a practical case); hence “sparsity reduction” can 
be applied such that , as discussed in [6]. This is a process 
which involves extracting  from support such that the sum of 
sparsities of innovations  is least. Note here that 
even ’s can be intelligently chosen to help minimize

, if any two are equal. However, such a situation is taken care by 
the choice of . This joint representation, , with least possible 
sparsity is called “reduced sparsity representation” and can be 
recovered back by JSM reconstruction method as given below. 

 

where is a vector formed by 

individual  and measurements,  is 

a matrix whose diagonal elements are the individual measurement 
matrices and . Further, 

, where and . 
Owing to reduced sparsity of joint representation ( ), the R-
G-B joint recovery is advantageous over the naïve approach since 

(3) 

(4) 

(5) 

(6) 

Fig 1(a) 

Fig 1(b) 

Fig 1: (a) Shows “Virtual Bayer Filter” structure on the DMD array.  There is no real Bayer filter, but each micro mirror is virtually 
“labeled” so that mosaic structure of a Bayer filter is formed.  (b) Proposed color CS camera architecture. This has a Rotating Color Filter 
(RCF) and a Rotation Control unit (RC) as new components in the Camera of [3]. It captures R, G and B measurements directly on Bayer 
planes, (thereby reducing the overall measurements) and uses joint R-G-B reconstruction scheme to produce better quality color image.   
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(i) the minimum number of measurements required for faithful 
reconstruction is reduced; and (ii) conversely, for a fixed 
measurement (not sufficiently higher than c , 4), the fidelity of 
reconstructed image would be superior. This approach can also be 
extended for reconstructing the Bayer images from Bayer 
measurements, which is the reason why we split G plane into two 
separate G1 and G2 planes in Eqn. (4) so as to support an additive 
model similar to Eqn. (5). However, we may note that unlike the 
original  and  images, the Bayer images 

and (from Bayer planes of Fig 1(a)) are not from 
aligned pixels positions, which means the inter-correlation is 
reduced, diminishing the efficacy of the baseline algorithm. This 
necessitates a better correlation model and recovery algorithm for 
reconstruction of Bayer images, which is presented next. 

 
3.2. Extended Joint R-G-B Reconstruction (E-JSM) 
 
Before we present the idea of E-JSM model, we would first like to 
discuss some key aspects of on Bayer images w.r.t JSM model. 
Under JSM of Eqn. (5) the “reduced sparsity representation” of the 
Bayer images ( and ) can be written as, 

 

where,  is the common component extracted from a common 
support  of cardinality  and  are innovation components. 
While this seems reasonable, noting that Bayer images exhibit 
reduced inter-correlation, we make the following observations, 
(i) The common support   of Bayer images is a smaller subset 
compared to  original image i.e.,  .  
(ii) For the  and  images, if we define the subset  ( , 
cardinality ) such that  or 

  (or bounded within a small value  for a 
practical case), and an equivalent version  for the Bayer 
images (cardinality ), we may write, . 
 
Observations (i) and (ii) suggest that, even after sparsity swapping, 
reduction in sparsity in the joint representation of Eqn.(8) is much 
smaller than the case of original  and  images. However, since 
the Bayer R, G, B are neighboring pixels, they exhibit sufficient 
pair-wise correlation. So, in this sense, there is still redundancy in 
innovation components and , say if we consider 

them, pair-wise. As an example, consider and . For 
these two innovation images, we may still identify a common 
support of non-zero coefficients ( ) and its 

subset ( ) such that   

(or ) . Thus, we can find a common 
component  by applying “pair-wise sparsity reduction” again, 
rather than letting the burden on the joint choice of  (and also 
corresponding ’s of Eqn.(8)). We may now define a new E-JSM 
additive model considering a global common and all six pair-wise 
common components as follows,  

 

 

 

 

Under this mode we have a “sparser” joint representation as, 

 

where,  is the 
vector of pair-wise common components and 

 is a vector of new innovation 
components. The recovery of  given the measurements, 

 , is achieved by the following l1 minimization,  

 

Here  matrix is given by , where 
 corresponds to global common,   

for the innovation and the  matrix is a matrix whose columns 
have inverse basis  at two locations corresponding to pair-wise 

common components and . 
Having recovered as above, we can form the estimates of spatial 
Bayer images and  using an inverse 
transform. The full r, g and b images can then be obtained using 
any existing demosiacing techniques.  
 

4. EXPERIMENTAL RESULTS 
 
We designed experiments to simulate the imaging process as 
illustrated in Fig. 1 on MATLAB platform. The measurement 
matrices used were random sequences of -1/+1 (sampled from 
uniform distribution) and also real numbers in the range [-1, 1] 
with Gaussian distribution). We used the TV minimization 
algorithm [8] in reconstruction and performed all our experiments 
using 2D DCT basis. Given a high resolution color image, Bayer 
color filtering was simulated by taking the proper R, G1,G2 and B 
components. Then CS measurements through random matrices 
were obtained. We tested our approaches (both E-JSM and JSM) 
with various popular test images of different color and visual 
content, and compared the performances with the approach of 
independent CS reconstruction. Some sample test images are 
shown in the Fig. 2. The performance results (Table 1, overall 
PSNR) is evaluated for 30%, 25% Bayer measurements, with the 
reference image being a Bayer filtered and demosaiced (through 
bilinear interpolation) version of the raw test image. We note that 
both E-JSM and JSM outperform the independent reconstruction in 
all cases. The E-JSM outperformed JSM for most of the times (the 
only exception is for the Goldhill). Furthermore, visually and 
perceptually, the E-JSM approach was always found superior, with 
better preserved image details and fewer color artifacts. This is 
illustrated in Fig. 3 where in a cropped portion of some sample 
images are shown in full resolution for visual comparison.  
 

5. CONCLUSION AND FUTURE WORK 
 

We introduced a new scheme for color image acquisition by a CS 
camera, where we capture R, G and B measurements of alternate 
pixels according to Bayer mosaic filter structure. In the process the 
total measurements are reduced (Bayer measurements). Further, we 
introduced a new joint reconstruction scheme that works on the 
Bayer measurements and exploits the correlation between R, G and 
B  to  produce   better  quality  for  the  reconstructed  color  image.  
Experiments demonstrated the advantage of the proposed method. 
We are working on further improving the approach by explicitly 
modeling the spatial shift of the R,G,B pixels in a Bayer mosaic. 
 

 
 

(8) 

(9) 

(10) 

(11) 
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Fig. 2: Shows some sample 
high resolution color 
images used for testing. 
From top right, Lena, 
Peppers, Light-House, 
Lady, Gold-Hill and Girl. 
The performance results on 
these images are tabulated 
in Table 1, for 30%, 25% 
measurements on the Bayer 
R, G1, G2 and B planes.    

Fig. 3: Shows image sections & corresponding results. Column-wise: Col 1 is the Bayer sampled 
and demoisaiced reference image (bilinear interpolation), Col 2,3 are joint R-G-B E-JSM, JSM 
reconstructed images respectively. Col 4 is R,G,B independently reconstructed images. Row-wise: 
cropped sections of original images, Lady, Light-House and Pepper in Rows 1,2 and 3 respectively.  

Name BM* 
 ( %)  

EJSM  
PSNR** (dB) 

JSM  
PSNR** (dB) 

CS PSNR** 
(dB) 

 Name BM* 
 ( %)  

EJSM  
PSNR** (dB) 

JSM 
PSNR**(dB) 

CS PSNR** 
(dB) 

 Lena 30 30.034 29.093 29.172 Lady 30 27.613 27.305 26.291 
25 28.16 26.777 28.15 25 26.82 26.551 25.631 

Pepper 30 29.714 28.395 28.077 Gold 
Hill 

30 29.689 29.838 27.838 
25 28.027 26.947 26.628 25 28.639 28.891 26.927 

Light 
House 

30 26.991 26.692 25.189 Girl 30 28.821 28.278 27.555 
25 26.105 25.732 24.200 25 27.714 27.080 26.405 

  *BM: Bayer Measurements (section 2). An X% Bayer measurement means X/4% measurement data each on R & B planes, X/2% on G. 
   ** PSNR here is measured between reconstructed image (CS/EJSM/JSM) and Bayer filtered, demosaiced (bilinear interploation) image. 

Table 1: Performance results on sample images of Figure 2. 
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