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ABSTRACT 

Central catadioptric camera is a class of omnidirectional sensor 
having single effective viewpoint with reflective surfaces and 
lenses. This work studies the geometry of central catadioptric 
projection of a set of lines and adopts it into calibration. In this 
paper, we propose a practical calibration method for central 
catadioptric cameras by manually labeling the corners on planar 
grids. This method analytically parameterizes the intersection of a 
set of lines, regardless whether they are parallel or not. Algebraic 
distance is introduced in order to robustify this method since the 
conic which is the projection of line, is difficult to be obtained 
precisely. Moreover, it is proved that central catadioptric is able to 
calibrate by at least one image with two lines. The performance of 
this method is validated by both simulation data and real image 
data. 

Index Terms— Catadioptric, intersection, calibration

1. INTRODUCTION 

A camera with large field of view is required in many applications, 
such as robot navigation, surveillance, model acquisition for 
virtual reality. Combining traditional camera with mirrors, referred 
to as catadioptric camera, is one of the effective ways to enhance 
the sensor’s field of view. During the last decade, there has been a 
considerable effort in designing and studying catadioptric cameras. 
Entire class of catadioptric cameras can be simply classified into 
central and non-central imaging systems, depending on whether 
they pose a single viewpoint [1] [8]. A unifying model was 
proposed for central catadioptric imaging system [5]. 

Previous work specificly on central catadioptric camera 
calibration can be divided into three different categories. The first 
category exploited prior knowledge about the scene, such as 
planar grids. An assumption was made that the projection function 
can be described by a Taylor series expansion [6]. The second 
category made use of the correspondences among multiple views 
for self-calibration [9]. The third category used properties of lines 
without any metric information. In [7], it was announced that a 
line in 3D space was mapped into a conic by central catadioptric 
cameras, where the information of unifying model was encoded in 
conics. Barreto and Araujo reported algorithms that located both 
the effective viewpoint and the absolute conic in the catadioptric 
image plane from the images of three lines [2], [3]. Furthermore, 
sphere images were introduced for calibration [10]. 

In this paper we focus on the central catadioptric cameras and 
propose a novel calibration algorithm on the basis of geometric 

properties of lines. We exploit planar grids with known control 
points that are widely used in conventional camera calibration. 
Previous methods usually consider entities separately, which 
inspires us to introduce a common constraint of lines involved in 
some relationships into calibration. Moreover, the proposed 
method is able to calibrate by at least one image with 2 lines 
containing 6 points per line. Decrease in the number of lines 
evidently reduces the workload of manually labeling for 
researchers.  

2. THE UNIFYING THEORY FOR CENTRAL 
CATADIOPTRIC CAMERA 

In [5], Geyer and Daniilidis proved the equivalence of the central 
catadioptric projection and the composition of a two-step 
projection through a unit sphere, depicted in Figure 1. The unit 
sphere centers at origin, coincident with focus of reflective surface, 
which is also the origin of the world coordinate. Given an arbitrary 
point , , ,1 T

X Y ZX in homogeneous coordinate. X is projected 
onto the unit sphere as 
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projects point x to point , ,1 T
u vm on image plane M .

Combining P and K, we obtain the camera matrix of the virtual 
camera virtualP KP .

In general, five intrinsic parameters for the virtual camera can 
be distinguished including aspect ratio r, skew factor s, principal 
point OP 0 0,u v , effective focal length fe and one more parameter 
l in terms of the eccentricity .
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where changes with the type of reflective surface (Table 1). The 
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transformation followed by a linear transformation, expressed in 
formula by six parameters as 

Sm KPX ,                                       (2)        
where is an unknown scalar. 

 planar ellipsoidal & hyperboloidal paraboloidal 
l l = 0 0<l<1 l = 1 

Table 1. mirror type and parameter l

3. CONSTRAINT ON A SET OF LINES 

Without loss of generality, we study geometric properties of line 
image on metric plane m , where r = 1, s = 0, u0 = 0 and v0 = 0. 
In this section, we first derive the analytical expression of a line 
image in central catadioptric system using unifying model, and  
infer the properties of lines in terms of six parameters: aspect ratio 
r, skew factor s, principal point OP 0 0,u v , effective focal length 
fe and l.

3.1 Projection of line 

The generalized image formation of a line in space is shown in 
Figure 1. Line in 3D space is degenerately equivalent to the great 
circle on the unit sphere. A great circle is a circle defined by the 
intersection of the sphere and a plane passing through the origin 

[5]. Given a supporting plane , , ,0
T

x y zn n n , where , ,
T

x y zn n n is 

unit norm vector of the plane, hence the quadratic form of line 
image on metric plane m is obtained [10]: 
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By multiplying affine transformation K, quadric form C  of 
line image on image plane M can be represented as: 

T TC K C K ,                                       (4)                                                                 
where C is conic on metric plane m , and C is conic on 
plane M .

3.2 Properties of a set of lines 

Assume 3 great circles L1, L2, L3, which are projections of 3 space 
lines on unit sphere. Evidently if L1, L2, L3 intersect at one point, 
they intersect the other antipodal point [7]. Note that, intersection 
points of lines in 3D space could be at infinity or not. Thanks to 
the nonambiguity of projection, it is indicated that parallel lines as 
well as a set of coplanar lines with a common point are suitable for 
practical calibration. 

If a conic C is the projection of a great circle on the metric 
plane m , the projective contour from projection center OC is a 
cone. We get: 
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Figure 1. The unifying model for central catadioptric image 
formation. 

Suppose there are a set of great circles intersected with two 
common antipodal points , ,

T

x y zs s ss and –s in homogeneous 
coordinate. Consequently, great circles correspond to a set of 
cones, whose common vertex is OC and two common generatrices 
are determined by s, OC and –s, OC respectively. By representing 
the tangent plane i using line coordinate 
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Q s ,               (6) 

we select first three factor of (6) for the normal vector at s of cone 
Qi and note it as in .The direction of common generatrix is defined 
by the vector: 

, ,
T

C x y ys s s lg s O .                            (7) 

Common generatrix is orthogonal to the normal vector of 
each cone at the corresponding common intersection point, which 
gives rise to a constraint. 
Constraint. Common generatrix is orthogonal to each normal 
vector at the intersection point (shown in Figure 2) 
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In next section, we expand the constraint from metric plane to 
image plane, and introduce algebraic distance in order to enhance 
the constraint of intersection. 
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Figure 2. Conic section of a cone. s and -s are two intersections on 
unit sphere. Vector in is orthogonal to vector g . Dash lines 
indicate the degenerated conic section of projective cone from OC
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4. CALIBRATION ALGORITHM 

Intrinsic and external parameters compose the unknowns of 
conventional camera calibration. In this paper intrinsic parameters 
consist of aspect ratio, skew factor, principle point, focal length 
and the center of virtual camera. Only intrinsic parameters of 
central catadioptric system are involved in the proposed 
calibration algorithm other than external parameters. 

Expanding the right side of (4), we get the constraint on 
intrinsic parameters and coefficients of conic on image plane: 

2

2

0 0

0 0 0 0
2 2
0 0 0 0 0 0

2

2 2 2

a r a

b rsa rb

c s a sb c

d ru a rv b rd

e su a u b sv b v c sd e

f u a u v b v c u d v e f

.              (9) 

Substituting s with , ,
T

x y zs s s in (2), intersection point on image 

plane is obtained: 
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z z z

f s f sf s
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s l s l s l
S .                (10) 

Since Intersection point s is a variable of 2 DOF, there are 2m+6
unknowns considered in the proposed algorithm: 2m intersection 
points on m images, aspect ratio r, skew factor s, principal point 

0 0,u v , effective focal length fe, and one more parameter l.
So far, each line image provides one equation while there are 

6 unknown intrinsic parameters to deal with. However, periodicity 
of trigonometric function makes minimization of constraint (8) to 
be a non-convex problem, where optimization algorithm will 
probably be trapped in local minimum. In order to enhance the 
constraint on image plane, we introduce algebraic distance,
defined as: 

2 2D , 2 2 2 0a u b uv c v d u e v fC m ,       (11) 
Any image of 2 line images, no matter whether they are parallel or 
not, will provide 6 independent equations, 3 for each line. 6 
parameters can be sufficiently estimated by minimizing the 6 
equations using nonlinear optimization algorithm such as 
Levenberg-Marquardt algorithm. The entire calibration algorithm 
could be written as: 

0 0
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, , , , ,

, , , , ,

min

min D ,
e

e

ij jr s u v f l

ij jr s u v f l

p

p

n g

C S
where 1,2, . 1,2,i n j m (12) 

where m stands for the amount of images, and n stands for the 
amount of lines in each image.  

Initialization can be done by finding the boundary of mirror 
on image, and fitting an ellipse to the boundary. We use fitted 
ellipse of boundary to initialize ratio aspect, skew factor and 
principle point, whilst an invariant for line image to initialize 

focus length [10]:
2
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We get the normal vector for the supporting plane of great 
circle on the unit sphere: cos sin ,sin sin ,cos T

i i i i i in .

(a) (b) 
Figure 3. (a) Simulated image containing 4 lines, which stand for 
the planar grids, when Gaussian noise of deviation 2.0 pixels are 
added. Blue and green ellipses are estimated conics. (b) Real 
image with planar grids. Blue dots means manually extracted 
mirror boundary and yellow circles locate corners of chessboard. 

From (3), the norm vector is derived by substituting 

fe: arctan i
i

i

e
d

, arctan
cos

i e
i

i i

d f
f

. Constructing a linear 

equation with a number of estimated normal vector 0As ,

where 1 2, T
iA n n n . If number of images is more than three, 

the solution to s is the eigenvector of TA A with respect to the 
smallest eigenvalue. Otherwise, cross product of normal 
vectors 1 2s n n is conducted, if there are only 2 images. 

5. EXPERIMENTS

This section states some experiments that demonstrate the 
performance of the proposed algorithm with simulation and real 
images. In principle, the calibration is absolutely accurate 
whenever conics corresponding to the line images are estimated 
without noise and quantization error. In practice, algorithm always 
suffers from inaccuracy of conic estimation and corner extraction. 
In these experiments, we make an assumption that l is a priori. 
According to the discussion in section 3.2, parallel lines are 
suitable in the propoed method. Taking practicality and 
convenience into consideration, we use chessboard of 
conventional camera calibration and manually label corners on the 
chessboard, while in simulated data, a set of points are simulated 
to imitate the chessboard. 

5.1 Simulated Data 

In simulation experiment, the central catadioptric system has the 
following parameters: r = 1, s = 0, u0 = 500, v0 = 500, fe = 300.  
Image resolution is 1000 1000, and we set l = 0.9 as a priori. 
From (3), projection of space line can be any type of conic when l
= 0.9, for instance ellipse, circle, hyperbola, or parabola. Conic 
estimation plays a significant role in line-property-based 
calibration. Many conic estimation algorithms are presented in 
[11]. If l2 – 1 – nz

2 > 0, conic is an ellipse. We obtain that 0
79.0472 . Considering the edge of the mirror, we 

chose 0 20 in the experiments. To simplify the experiment, 
we assume the line images are ellipse (or circle). Here, we use an 
ellipse-specific method called least squares fitting of ellipses [4]. 

 Since the projection of the mirror boundary is manually 
selected in real data experiment, boundary in simulation is 
generated as shown in Figure 3. The simulated boundary is repres- 
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Figure 4. Results of simulation experiment. (a)(b)(c) and (d) for 
the proposed method. The performance of v0 is similar to u0. (e) 
and (f) for the method proposed in [2]. The performance of r
and s is similar to those of the proposed method. Method in [2] 
can not apply this condition when all the conics have two common 
intersections. Hence, calibration with one image is not conducted 
in this method. 

ented by 10 separated points randomly located along entire 
boundary. 4 lines compose the planar grids on each image with 
arbitrary orientation rotating about principle as well as vibration. 
On each projection curve we select 10 points with Gaussian noise 
of 0 mean and standard deviation. Deviation varies from 0 to 
4.0 pixels with step of 0.4 pixels and the number of images varies 
from 1 to 4. For each noise level, the mean values of the 
parameters are calculated and 100 independent trials are 
conducted using Matlab. Experimental results are shown in Figure 
4, while the results of the method proposed in [2] are shown for 
comparison. The results show that the proposed algorithm is 
robust in the condition of different noise levels. However, the 
results are not improved evidently by increasing the number of 
images. This might be attributed to the fitting inaccuracy of conics 
with low curvature, which influences the nonlinear optimization. 

5.2. Real Data 

The central catadioptric camera we used consists of hyperbolic 
mirror of eccentricity 1.3017 and Sony XCD-SX910CR 
(http://www.neovision.cz/prods/panoramic/h3s.html). From 
(1), we get l=0.9662. The resolution of the image is 1280 960. 
Conics and the mirror boundaries are extracted by labeling the 
corner of the chessboard and randomly selecting points on the 

edge of the mirror respectively. The calibration results with real 
data are listed in Table 2. 

Parameters Results 
r 1.0002±9.7450×10-5

s 0.0147±4.5×10-3

u0 635.5244±1.1578 
v0 480.2509±1.1607 
fe 339.5925±0.9399 

Table 2. Calibration results with real data (using 4 images) 

6. CONCLUSIONS 

This paper introduces a novel constraint of lines that intersect on 
one or two (points at infinity) common points into central 
catadioptric camera calibration. It is proved that these lines could 
be parallel or concurrent and the minimum of two lines should be 
adequate for calibration in principle. We propose a calibration 
algorithm which parameterizes the intersection points and 
optimizes intrinsic parameters. The proposed algorithm requires 
commonly used planar grids, and corner points are manually 
selected as few as possible. In order to efficiently solve the 
non-linear equations, algebraic distance is applied to accelerate the 
convergence of Levenberg-Marquardt algorithm and enhance the 
intersection constrain against local minimum. 
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