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ABSTRACT

This paper presents a multi-view approach to the tracking of

people location and orientation. To achieve efficient and ac-

curate likelihood evaluation, a novel likelihood computation

method is proposed. Mixtures of Gaussian (MoG) are used to

represent the color models of subjects. The scaled unscented

transformation is used to project the MoG color models onto

the image plane to predict the color distribution for a motion

sample. The efficacy of the proposed approach is demon-

strated by experiment results obtained using real videos.

Index Terms— multi-view tracking, appearance model-

ing, unscented transformation, particle filtering

1. INTRODUCTION
Reliable location and torso orientation tracking of people re-

mains a challenge for computer vision. Existing people track-

ing methods can be divided into monocular [1] and multi-

view [2, 3, 4, 5, 6] approaches. An excellent review of state-

of-the-art methods in both categories can be found in [2]. It is

obvious that multi-view approaches are necessary when pre-

cise tracking is desired in presence of occlusions.

In visual tracking, it is important to build a color model

which is accurate and friendly to efficient likelihood evalua-

tion. Existing models do not meet this requirement. For ex-

ample, in [5] only color distribution in the vertical direction

of the subject is used with horizontal color distribution in-

formation missing. Such simplified color model is not able to

recover torso orientation. In our proposed approach in this pa-

per, we build a color model using mixture of Gaussian (MoG),

which can be used for orientation tracking. Scaled unscented

transformation (SUT) is used to find the predicted color dis-

tribution given a motion sample with point-wise projection.

This method avoids projecting surface points of the 3D model

onto image planes and thus is computational efficient.

To handle cross-body occlusion, most Bayesian tracking

techniques make use of joint state space and utilize joint-

likelihood evaluation to weight motion samples. However,

joint-likelihood evaluation is not sample-efficient. Indepen-

dent tracking of multiple bodies is computational efficient.

However, such methods cannot handel occlusions very well.

In [7], a hybrid joint-separable (HJS) tracking model is pre-

sented as an efficient and accurate multiple body tracking

framework which elegantly approximate the joint dynamics

using a Markov random field through message propagation

and evaluate the likelihood of marginal state with respect to

the observation according to an occlusion map and appear-

ance model. In our approach, we resembles HJS in the sense

that an adaptive likelihood evaluation scheme is adopted to

effectively improve tracking performance. Each subject is as-

signed an individual particle filter. Image observation is an-

alyzed based on subjects’ motion dynamics. Joint-likelihood

is needed only when subjects are close in camera views and

individual likelihood can be efficiently marginalized based on

joint-likelihood and particle filter’s proposal distribution.

In this paper, we present a robust multi-view people track-

ing approach, featuring the tracking of torso orientation, and

efficient likelihood evaluation. Experimental results obtained

using real video show the efficacy of the proposed method.

2. APPEARANCE MODELING

Assume that people are walking on the ground plane in an

upright pose. We model human body as an upright ellipsoid

(prolate spheroid) with three structure parameters (rx, ry, rz).
A similar model is used in [8]. These structure parameters

are learned off-line using known subject 3D location {Xt}N
t=1

and foreground image {Bt}N
t=1 obtained using background

subtraction, where N is the number of training frames. The

optimal structure parameters maximize the objective function∏N
t=1

|E(Xt,rx,ry,rz)∩Bt|
|E(Xt,rx,ry,rz)∪Bt| where E(X, rx, ry, rz) denotes the

projected ellipse area obtained based on the ellipse conic C =
(PQ−1PT )−1. Q is the 4 × 4 matrix representation of the

ellipsoid encoding the structure and position parameters and

P the camera projection matrix. The gradient-descent is used

to solve this maximization problem.

In our approach, we first construct a texture map IS on the

ellipsoid surface in the spherical coordinates (θ, φ) (e.g. Fig-

ure 1 (a)) with θ ∈ [0, 2π] and φ ∈ [0, π]. Each point (θ, φ)
in the texture map has a corresponding 3D Euclidean loca-

tion (x, y, z) where x = rx cos θ sin φ, y = ry sin θ sin φ,

and z = rz cos φ. IS can be filled out from training images

of the subject with known 3D location, orientation, and cam-

era projection matrix. The top panel of Figure 1 (c) shows

an example of texture map construction for one subject. Us-
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Fig. 1. (a) Illustration of visibility computation; (b) Examples of visible regions (white or gray indicates visible region); (c)

Visible MoG transformed by SUT w.r.t. different torso orientations.

ing IS , a mixture of Gaussian G is learned to represent the

color distribution over (θ, φ) space. The HSV color space is

adopted to make observations less sensitive to varying light-

ing conditions. In our experiment, we learned MoG with 25

components using the EM algorithm. Each subject will have

her/his own MoG template, so we will have G = {Gk}K
k=1,

where K is the number of subjects.

3. THE PROPOSED APPROACH
In this paper, our tracking task is to simultaneously find the

2D location (x, y) and torso orientation ω of these subjects.

Thus, the state vector of the kth subject at time t is a 3-D

vector Xk
t = (xk

t , yk
t , ωk

t ), and the joint state at t is Xt =
{Xk

t }K
k=1. We cast the tracking problem into the maximum a

posteriori (MAP) framework as follows (1)

X̂k
t = argmax

Xk
t

{p(Xk
t |It, Gk) ∝ p(It|Xk

t , Gk)︸ ︷︷ ︸
Likelihood

p(Xk
t )︸ ︷︷ ︸

Dynamic

} (1)

where It = (I1
t , ..., IC

t ) are images from all C cameras at t,
Gk is the appearance model of subject k. In our approach, the

motion model p(Xt) is given by a simple AR model Xt =
AXt−1 + Vt−1 with A manually selected.

3.1. Adaptive Tracking
When subjects are well separated from each other, joint like-

lihood evaluation is not sample-efficient since more samples

are needed to simulate the joint-distribution to get accurate

estimates. In the spirit of the hybrid joint-separable tracking

model [7], to improve tracking accuracy with less samples, we

use marginalized likelihood evaluation. Separate subjects are

first identified for each view based on image observation anal-

ysis and motion dynamics. If subject k is well separated from

other subjects in camera c, a binary mask Bk,c
t is generated

for subject k only to obtain the foreground image for subject

k, that is Ik,c
t = Ic

t �Bk,c
t , where � represents element-wise

matrix product. By evaluating p(Ik,c
t |Xk

t , Gk), the position

and orientation of subject k can be evaluated robustly with a

small number of samples.

If multiple subjects are close in some camera view, occlu-

sion may occur. In this case, we will then first compute the

joint likelihood and then find marginalized likelihood of the

movement state vectors of each individual subject. Let’s con-

sider a case when two subjects are close to each other. The

marginalized likelihood p(Ic
t |X1

t ) is given by

p(Ic
t |X1

t ) =

∫
X2

t
p(Ic

t |X1
t , X2

t )p(X1
t )P (X2

t )dX2
t

p(X1
t )

=
∫

X2
t

p(Ic
t |X1

t , X2
t )p(X2

t )dX2
t (2)

where p(X1
t ) and p(X2

t ) can be simply obtained from the

proposal distributions of the particle filter, respectively. This

adaptive likelihood evaluation scheme is sample-efficient and

able to produce better tracking results using a small set of

samples than joint likelihood evaluation.

3.2. Likelihood Evaluation
Background subtraction is used to produce binary foreground

masks Bt = (B1
t , ..., BC

t ) from It. Given binary masks Bt

and input images It, we can get the blob Ft which has 2D

coordinates and color values for foreground pixels. We de-

compose the likelihood into two parts: color matching and

spatial matching, as shown by (3).

p(It|Xk
t , Gk) = p(Bt|Xk

t )︸ ︷︷ ︸
Spatial matching

p(Ft|Xk
t , Gk)︸ ︷︷ ︸

Color matching

(3)

Spatial matching mainly serves 3D localization, while color

matching is useful for 3D localization, torso orientation re-

trieval and identity maintenance.

3.2.1. Spatial matching
Spatial matching indicates how well the 2D ellipse projec-

tions computed from Xk
t can match subject foreground Ft.

Spatial matching score is computed by (4).

p(Bt|Xk
t ) ∝

C∏
c=1

M c(Xk
t ) =

C∏
c=1

|Bc
t ∩ Ec(Xk

t )|
|Bc

t ∪ Ec(Xk
t )| (4)

where Ec(Xk
t ) is 2D ellipse projection of subject k in camera

view c. When subjects are close in camera view c, the joint

spatial matching score of the joint state Xt is

p(Bt|Xt) ∝ M c(Xt) =
|Bc

t ∩ (∪N
k=1E

c(Xk
t ))|

|Bc
t ∪ (∪N

k=1E
c(Xk

t ))| (5)
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3.2.2. Color matching using SUT
To compute the color matching part in the likelihood (3), we

need to compare the similarity of the observed image and the

predicted color distribution. The predicted color distribution

given a motion sample is obtained using the learned color

template and the scaled unscented transformation (SUT). By

using SUT, while preserving spatial information in matching

we avoid point-wise projection of the texture map to the im-

age plane and thus reduce computational cost and maintain

good tracking accuracy.

Due to self-occlusion of the subject, only part of color

template IS is visible to one camera at one time instant. To

find the predicted color distribution in this camera given the

motion sample, we need to identify the visible portion of IS

first. In this approach, this is done by finding the visible com-

ponents of the corresponding MoG. A point s on the ellipsoid

is visible to a camera only if the angle between surface nor-

mal direction at s and camera projection ray through s is less

than 90◦. In this way, we can obtain Gv , the visible MoG by

keeping the components with visible centers. Figure 1 (a) and

(b) shows examples of visible region in texture map.

The mapping from the (θ, φ) space to image plane is a

nonlinear transformation due to the perspective projection. In

our approach, we use SUT to map Gv from the (θ, φ) space

to the 2D image space. SUT [9] is a method for calculating

the statistics of a random variable that undergoes a nonlin-

ear transformation that can overcome the dimensional scaling

effects. The MoG transformation algorithm is given below.

Input: Mixture component’s mean μx = (θ, φ, h, s, v)T and

covariance matrix Σx; 3D location X = (x, y, rz

2 ), where rz

is taken from the body structure parameters and used as an

estimate of the height of the subject and torso orientation ω;

camera projection matrix P.

Output: Transformed mixture component’s mean μy =
(x̃, ỹ, h̃, s̃, ṽ)T and covariance matrix Σy.

1. Dimension of vector d = 5; compute sigma points

with weights for mean and covariance {xi, w
(m)
i , w

(c)
i }, i =

0, ..., 2d according to the unscented transformation [9].

2. Transform each sigma point: yi = h(xi), where h(x) is

given by (x̃, ỹ) = f(θ, φ, X, ω,P); h̃ = h; s̃ = s; ṽ =
v, and f(·) is a function encoding camera projection.

3. Compute the transformed mean μy and covariance Σy us-

ing the weighted sigma points [9].

When subjects are far apart from each other, the likeli-

hood of the state vector of individual subjects is computed

separately. Given the foreground image of the kth subject

Fk
t = {F k,c

t }C
c=1, the motion sample Xk

t , and Gk the MoG

template for subject k, the color matching part of the likeli-

hood is given by

p(Fk
t |Xk

t , Gk) =
C∏

c=1

Nc∏
i=1

GXk
t
(ξc,i) (6)

where ξc,i is the ith foreground pixel feature including color

and location in the cth camera view, and Nc is number of fore-

ground pixels and GXk
t
(·) is the probability density function

(pdf) of the transformed visible MoG after SUT using Xk
t .

When subjects are close to each other, cross-occlusion needs

to to handled. To this end, we first estimate the occlusion rela-

tionship for each pair of subjects given the joint motion sam-

ples X. The ray/quadrics intersection (RQI) method [10] is

used to infer the cross-occlusion relationship, based on which

the joint likelihood p(Ft|Xt,G) can be computed. Due to

space limitation, details on how we handel cross-occlusion

have to be omitted in this paper.

4. EXPERIMENTAL RESULTS
Three calibrated color cameras with 320×240 resolution were

used in our experiments. In our experiment, 1 unit ∼= 427cm.

Each subject is tracked by a particle filter with 150 particles.

Our system was tested on two video sequences (1031 and

1100 frames). Since 3D ground truth is not available, we take

advantage of 2D ground truth, i.e. 2D foreground segmen-

tations F c
GT instead. We generate the estimated 2D ellipse

regions Ec for the camera c by projecting subjects’ ellipsoids

w.r.t. the tracking results (locations and orientations). Two

performance measures, the precision (P = F c
GT ∩ Ec/Ec)

and the recall (R = F c
GT ∩ Ec/F c

GT ), can be used to eval-

uate the tracking performance. Tracking results using two

other approaches in [8] (no color model) and [5] (verti-

cal layered color model) were also obtained for compari-

son. The average (P, R) pairs of the two testing videos

are (0.84, 0.59), (0.83, 0.63) for the method without color

model [8], (0.82, 0.87), (0.84, 0.89) with vertical layered

color model [5], and (0.85, 0.90), (0.84, 0.92) for the pro-

posed method. It can be seen that three approaches have

similar average P values. But the average recalls show that

tracking degrades without a good color model. Figure 2

shows tracking results using one test video. The tracking

without color model wrongly labels the subjects after they

passed by each other closely in frames 274 and 354. The

tracking with vertical layered color model is also incompe-

tent in torso orientation recovery in most of frames. However,

our approach is able to correctly track subjects’ locations and

torso orientations. Subjects’ identities are well maintained as

well under partial/full occlusions.

5. CONCLUSION

We show in this paper that in multi-view tracking, MoG can

be used to represent the color appearance model and the

scaled unscented transformation can be used to obtain the

predicted color distribution in likelihood evaluation. Encour-

aging results have been obtained using the proposed method.
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Fig. 2. Comparison of three tracking approaches. For each approach, we superimpose the estimated ellipses on the ground truth

images and illustrate subjects’ torso orientations in the top-down views. The last two rows show the tracking results in cameras

2 and 3 with estimated ellipses superimposed on raw images.
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