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ABSTRACT

Designing algorithms, which require less memory and con-

sume less power, is very important for the portability to em-

bedded smart cameras, which have limited resources. We

present a light-weight and efficient algorithm for salient fore-

ground detection that is highly robust against lighting varia-

tions and non-static backgrounds such as scenes with swaying

trees. Contrary to traditional methods, memory requirement

for the data saved for each pixel is very small in the proposed

algorithm. Moreover, the total memory requirement is adap-

tive, and is decreased even more depending on the amount of

activity in the scene. As opposed to existing methods, we treat

each pixel differently based on its history. Instead of requir-

ing the same amount of memory for every pixel, we allocate

less memory for stable background pixels. The plot of the re-

quired memory at each frame also serves as a tool to find the

video portions with high activity.

Index Terms— foreground detection, background sub-

traction, salient motion, light-weight algorithm, memory.

1. INTRODUCTION

Embedded smart cameras have limited processing power and

memory. Thus, it is very important to design light-weight al-

gorithms that require less memory for storage, and consume

less power. This paper presents a light-weight and efficient al-

gorithm for salient foreground detection that is highly robust

against lighting variations and non-static backgrounds such

as scenes with swaying trees, water fountains, rippling water

effects and rain. The memory requirement of the proposed

method is significantly less compared to the traditional meth-

ods and our previous work [1]. Moreover, this is achieved

without sacrificing accuracy.

Many methods have been introduced for foreground ob-

ject detection [2]-[13]. However, much less attention has been

paid to the memory requirement and the portability of the al-

gorithms to an embedded processor.

Adaptive Mixture of Gaussians (MoG), introduced by

Stauffer and Grimson [11], is one of the most commonly

used background subtraction (BGS) methods to model com-

plex and non-static backgrounds. However, a few Gaussian
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distributions are usually not sufficient to accurately model

backgrounds having fast variations. Zivkovic [13] proposed

an improved adaptive MOG model to constantly update the

parameters of a Gaussian mixture and to simultaneously se-

lect the appropriate number of components for each pixel.

Kim et al. [6] proposed an algorithm for background

modeling, where sample background values at each pixel are

quantized into codebooks during training. This algorithm

performs well when background is non-static. However, its

performance on different video sequences is dependent on

the choice of several threshold values.

In tracking applications, we are interested in salient mo-

tion. Thus, we need to handle the challenging cases of light-

ing variations and non-static backgrounds, and separate those

from the salient motion regions. This increases the algorithm

complexity, and thus memory requirements. For instance, in

the case of adaptive mixture of Gaussians [11], three to five

Gaussian distributions are saved for each pixel. Each distribu-

tion is represented by its mean and variance, and these values

are saved as floats. In the codebook-based method [6], each

codeword for each pixel has nine entries. Some of these en-

tries need to be floats, and on the average 6.5 codewords are

needed for a pixel. In our previous work [1], we presented

a method for which the memory requirement is significantly

less compared to the state-of-the-art algorithms. Yet, the same

amount of memory is allocated for every pixel.

In this paper, we present a light-weight salient foreground

detection method, wherein the total memory requirement per

frame is adaptive. The total memory requirement is decreased

even more depending on the amount of activity in the scene.

As opposed to existing methods, we treat each pixel differ-

ently based on their histories. Instead of requiring the same

amount of memory for every pixel, we allocate much less

memory for stable background pixels. Thus, the memory re-

quirement of the proposed method is significantly less com-

pared to the traditional methods and our previous work [1].

As in our previous work, the algorithm presented here differ-

entiates between salient and non-salient motion based on the

reliability or unreliability of a pixel’s location, and by consid-

ering neighborhood information. The concept of reliability

will be summarized below. The background model is selec-

tively updated with an automatically adaptive rate, thus can
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adapt to rapid changes as well. For instance, if a location is

deduced to be reliable, a higher update rate is used, i. e. this

location is incorporated to the background faster. Also, less

memory is used for these locations. The algorithm gives very

reliable results with gray level images.

In the proposed method, the memory requirement at each

frame is adapted according to the amount of activity in the

scene at that frame. For instance, if the static background is

observed for N frames, then the minimum possible memory

will be allocated for each pixel during these N frames. If a

car enters the scene, then more memory will be allocated for

those pixels that are affected. Thus, if we plot the total mem-

ory requirement versus the frame number, the changes and

peaks in this plot will indicate the portions of the video with

activity. Thus, this plot can serve as a tool for activity sum-

mary. We will revisit this important functionality in Section

3, where we will also present the foreground detection results

obtained with different challenging sequences, and compare

them with the results of different BGS methods.

2. THE PROPOSED METHOD

The details of the proposed algorithm will be explained by re-

ferring to the pseudo-code provided in Table 1. In the pseudo-

code, M and Mprev denote the current and previous back-

ground models, respectively. s(i, j) is a binary variable, and

denotes the state of a pixel at location (i, j). It is 1 when the

pixel is classified as foreground, or vice versa. m(i, j) is an-

other binary variable that determines the amount of memory

to use. m(i, j) is set to be 1 if the state of the pixel has not

changed in the last 50 frames. This indicates that this pixel

location is stable, and can be allocated less memory. The

counter h(i, j) holds the number of times a pixel changes its

state s(i, j) in the last 100 frames, i. e. h(i, j) keeps the num-

ber of times a pixel’s state changes from 0 to 1, or vice versa.

h(i, j) is used to determine the reliability or unreliability of a

pixel’s location. The motivation is that the lower the value of

h(i, j), the more stable and reliable that pixel location is.

An important point to note about the computation of

h(i, j) is the following: At any frame t, we want the number

of changes in a pixel’s state in the last 100 frames, and this

requires to save the frame number for each change of state.

For locations with non-salient motion, this requires an array

with a potentially high dimension for each pixel. Instead,

we divide the 100-frame window into 4 intervals, and keep

a counter CCk, k ∈ {1, 2, 3, 4}, for each interval for pixel

(i, j). A temporary variable p keeps the number of changes in

each 25-frame interval. At every kth 25-frame interval, CCk

is replaced by p, and then p is set to 0. This avoids saving the

instances of changes. Then h(i, j) = CC1 + . . . + CC4.

The background model M is built by using a temporal dif-

ference method [1]. In order to detect slow motions or stop-

ping objects, a weighted accumulation, Iac
t , is used for tem-

poral difference. At pixel location (i, j), Iac
t is defined as:

Iac
t (i, j) = (1 − wac)Iac

t−1(i, j) + wac|It(i, j) − It−1(i, j)|

where t is the current frame number, It is the current image

frame, wac = 0.5, and Iac
0 is set to be an empty image. At

the beginning M(i, j) = −1 for every pixel location (i, j).
M(i, j) is set to be It(i, j), if Iac

t (i, j) < T , where T is a

difference threshold. Thus, as moving objects that exist in the

scene change their location, the M will gradually be filled. If

M is not complete, the difference image (Idiff ) is set to be

Iac
t . If the M is complete, then Idiff = Imd

t , where Imd
t =

|It − M |.
T , seen in Table 1, is a difference threshold. When the

model M is not complete, and Idiff is based on temporal dif-

ference method T = Td = 15 is used. When the model M
is complete, and Idiff is set to be Imd

t , then T = Tm = 25
is employed. The same values have been used in the experi-

ments for all the video sequences. Since temporal difference

is based on consecutive frames, and tends to give smaller dif-

ferences, Td has a smaller value than Tm.

2.1. Adaptive memory allocation
As described above, h(i, j) is determined by dividing a

100-frame window into 4 intervals, and keeping a counter

CCk, k ∈ {1, 2, 3, 4}, for each interval for pixel (i, j). For

each CCk, 1 byte is allocated. Rather than saving many

values for each pixel location, such as averages for three

color values, multiple Gaussian distribution means and vari-

ances, multiple codewords with multiple entries, we use CCk

to form a very compact summary of a pixel’s history. Let

h50(i, j) = CC3 + CC4 be the number of changes in the

pixel’s state in the last 50 frames. Every 25 frames, we check

the value of h50(i, j). If h50(i, j) ≤ 1, it means that the

state of this pixel has not changed during the last 50 frames,

i. e. this location is very reliable and stable. If the current state

of this location is 0, i. e. it is a background pixel, m(i, j) will

be set to 1, and all CCk values, each of which was allocated

1 byte, will be deallocated. The reasoning is the following.

Since the pixel has been reliable and stable in its most recent

history, we do not need to allocate extra memory to check

reliability until the pixel’s state changes again.

If m(i, j) = 1 for a pixel, and the pixel’s state changes

to foreground at frame t, then m(i, j) is set back to zero, and

1−byte memory is allocated for each CCk. The reason is that

this pixel is not a stable background location anymore, and

counting of the number of changes in its state starts again.

We perform the memory checks every 25 frames so that each

CCk corresponds to a complete 25-frame interval.

The comparison of the memory requirements of this adap-

tive method, and our previous work is provided in Section 3.

2.2. Adaptive Model Update
The update of the background model M is performed in a

selective way, and with an automatically adaptive rate. The

motivation is that when a pixel’s location is deduced to be

consistently reliable, then the value at that location is incorpo-

rated into the background model with a higher weight. Thus,
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Table 1. Salient foreground detection algorithm

Set M(i, j) = −1 and s(i, j) = 0 for all i, j

Set I1 = first frame, Imd
t (i, j) = −1 for all i, j

for every frame t > 1

Set It = tth frame and set Ioutp all zeros

if ∃ i, j for which M(i, j) = −1
compute Iac

t , set Idiff = Iac
t , T = Td

else

set model complete = true

compute Imd
t , set Idiff = Imd

t , T = Tm

for all i, j
if Idiff ≥ T

if s(i, j) = 0
update counters and set s(i, j) = 1

else

if s(i, j) = 1
update counters and set s(i, j) = 0

if M(i, j) = −1
M(i, j) = It(i, j)

Update h(i, j)
if model complete = true

if Imd
t (i, j) > T

if h(i, j) < Tp

s(i, j) = 1; m(i, j) = 0;

else

Set neighb(i, j) to be 3 × 3 neighb. of h(i, j)
if N > 0.7(2w + 1)2 (details in [1])

s(i, j) = 1; m(i, j) = 0;

else

s(i, j) = 0
M(i, j) = αIt(i, j) + (1 − α)Mprev(i, j)

else

if t is a multiple of 25

if h50(i, j) ≤ 1
m(i, j) = 1; h(i, j) = 0;

M(i, j) = 0.5 × It(i, j) + 0.5 × Mprev(i, j)
else

M(i, j) = αIt(i, j) + (1 − α)Mprev(i, j)
Set Iac

prev = Iac
t , Mprev = M

return s(i, j)

if s(i, j) = 0 and m(i, j) = 1, then this pixel will be incor-

porated to the background model with 50% weight.

As opposed to traditional model-based BGS approaches,

in the proposed scheme satisfying Imd
t (i, j) > T is not

enough for the pixel location (i, j) to be classified as fore-

ground. Instead, reliability constraints are employed to dif-

ferentiate between salient and non-salient motion. A pixel

location satisfying Imd
t (i, j) > T is classified as foreground,

and its state is set to 1 only if its counter h(i, j) satisfies

h(i, j) < Tp, where Tp = 15 is the percentage threshold. The

reasoning is that if h(i, j) < 15, then it means that the status

of the pixel at this location changed less than 15% of the time

during the last 100 frames making this location a reliable one.

In other words, this location is not likely to be in a non-salient

motion region. Thus the intensity difference greater than T is

caused by a salient motion with high probability.

3. EXPERIMENTAL RESULTS

We first compared the proposed method with our previous

work in terms of the total memory requirement for each

frame. The plot of the memory requirement (in bytes) ver-

sus frame number is displayed in Fig. 1, where each frame

is 240x320. The flat part at the beginning corresponds to

the model building period, where each pixel is allocated the

same amount of memory (1 byte for the intensity value, 1
byte for each CCk, 1 bit for the state variable). The total

memory requirement per frame during this period is equal to

the memory requirement of our previous work (393.6 Kb).

After the background model is built, the memory requirement

of the proposed method drops significantly to 100 Kb, since

the memory allocation is adapted according to the activity in

the scene. Between frames 2100 to 2300, a person walks in

front of the camera, affecting many pixels. This increases the

allocated memory and causes the peak in Fig. 1.

Fig. 1. Total memory requirement vs. frame number plot also serves

as a tool for activity summary.

We tested the proposed method on several video se-

quences, and compared it with six other BGS methods in-

cluding our previous work. All the displayed outputs images

are obtained without applying any morphological or post-

processing operations. All the results of our algorithm were

obtained by using the same threshold values for all videos.

Specifically, Td = 15, Tm = 25, Tp = 15, and α = 0.05.

Figures 2 and 3 show the outputs obtained with the proposed

method and different state-of-the-art BGS algorithms. The

proposed algorithm performs better in terms of eliminating

non-salient motions caused by wind and rain.

Figure 3 was obtained from a video of a scene with a foun-

tain, where the water level goes up and down. Moreover, dur-

ing the video, lighting changes due to moving clouds, as seen

in Figures 3(a1) and 3(b1). The proposed method performs

better by having the least amount of noisy pixels and good de-

tection, and requiring significantly less memory at the same

time. We also tried the original MoG method and the method

by Horprasert et al. [4] on all the videos, but only displayed

the outputs of the algorithms giving the better results. While
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(a) Frame 296 (b) Proposed method (c) Our previous work (d) Eigenbackground (e) Improved MoG (f) CodeBook

Fig. 2. Foreground detection results of several different algorithms on a challenging video with strong wind and rain.

(a1) Frame 983 (a2) Proposed method (a3) Our previous work (a4) Eigenbackground (a5) Improved MoG (a6) Codebook

(b1) Frame 1800 (b2) Proposed method (b3) Our previous work (b4) Eigenbackground (b5) Improved MoG (b6) Codebook

Fig. 3. Comparison of foreground detection results of several different algorithms on a video of a fountain.

the other algorithms were run with color images, the results

of our method were obtained with gray-level images.

4. CONCLUSIONS AND FUTURE WORK

We presented a light-weight salient foreground detection

algorithm with adaptive memory requirement. Instead of

requiring the same amount of memory for every pixel, less

memory is allocated for stable background pixels. Thus, a

significant decrease is provided in the total memory require-

ment per frame. If the total memory requirement versus the

frame number is plotted, the changes and peaks in this plot

will indicate the portions of the video with activity. Thus, this

plot can serve as a tool for activity summary. The algorithm

achieves the reduction in the memory requirement without

sacrificing accuracy. The algorithm can run with gray-level

images and handle challenging non-static backgrounds.
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