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ABSTRACT

We propose a novel graph-based transductive learning ap-

proach for interactive image segmentation. Here the term

“transductive” indicates a process that iteratively propagates

information from user-labeled regions to unlabeled image

pixels. For the application of interactive image segmentation,

transductive approach has several advantages compared with

traditional color probabilistic model based approach. How-

ever, previous transductive approaches for image segmen-

tation usually utilize an 8-connected neighborhood system,

which has low efficacy when transferring local information

to remote pixels. The main contribution of this paper is to

estimate pairwise pixel similarity based on a novel path-based

metric (i.e. connectivity similarity), rather than local com-

parison with 8-connected neighbors. We further theoretically

prove the computing complexity is on a polynomial order and

provide convergence guarantee for the extra local smooth-

ing operation that is introduced to further refine the initial

results. Especially, the proposed method shows promising

performance in the multi-label case. Various experiments are

presented to illustrate its effectiveness.

Index Terms— interactive image segmentation, connec-

tivity similarity, linear propagation

1. INTRODUCTION

Image segmentation is one of the traditional and important

problems in computer vision and image processing. Its po-

tential applications are especially wide, such as medical im-

age analysis and personal photo editing. Fully automated im-

age segmentation is possible yet prones to error, mainly be-

cause it is difficult to overcome the gap between local image

features (e.g. colors, edges, textures) and high-level seman-

tics. To enhance the segmentation quality, one extra reference

image ([1],[2]) or flash/non-flash image pairs [3] can be in-

troduced to provide extra useful hints, which proves effective

yet complicates the image capturing process. Instead, in re-

cent years semi-automated or user-aided image segmentation

has attracted increasing interest, due to its low requirement

and higher accuracy.

Fig. 1. Two difficult examples for inductive image segmen-

tation. (a) color distributions of object/non-object are highly

ambiguous. (b) heavy-tailed, asymmetric, uneven distribution

which is distorted 2-manifold rather than 3D Gaussians and

is difficult to be accurately represented by statistical models.

See text for detailed explanation.

Generally speaking, most of popular interactive image

segmenting approaches can be roughly divided into two cat-

egories: inductive or transductive way, which fundamentally

differs in the way to utilize user guidance. In most inductive

approaches, images are assumed to be drawn from certain sta-

tistical models (typically Gaussian Mixture Model, GMM),

whose parameters can be optimally obtained via maximum

likelihood or MAP estimation from seeds (i.e. user-labeled

pixels). The most representative approaches are the GrabCut
[4] system and its variant LazySnapping [5] developed by

Microsoft. However, it is still open problem to find more

reasonable models for image appearance. GMM, although

simple and efficient, has several severe drawbacks. As il-

lustrated in Figure 1-(a), when the desired objects and back-

ground share similar distribution in multi-dimensional color

space, it is rather difficult to separate them based on GMM

color model, since the information of spatial configuration is

totally dropped during the model-training phase.

On the contrary, transductive graph-based methods [6]
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avoid explicitly feature modeling via non-parametric label

propagation. Typically images are modeled as sparse graphs

with 2D lattice topology. Individual pixel or overlapped small

patches are treated as graph nodes, while adjacent pixels or

patches are connected by an edge in the constructed graph.

Assume ”seeds” have high confidence about their labels,

and iteratively propagate it to remote unlabeled nodes along

weighted graph edges. It is worthwhile to highlight two ma-

jor issues in above process: graph construction (i.e. how to

define pairwise similarity metric between pixels or patches),

and graph propagation (i.e. transfer confidence to unknown

image regions). Regarding the first issue, current approaches

are mostly based on local comparison, efficient yet dropping

all global information. Here we’ll show that global method is

possible.

In this paper we propose a novel interactive image seg-

mentation method based on connectivity similarity. It con-

sists of two steps: graph construction and local smooth-
ing. We will discuss the details in Section 2 and here briefly

list its advantages over other methods: first and most impor-

tantly, unlike conventional approaches, it performs graph con-

struction with a robust, global, pairwise similarity definition

rather than local ones. Regarding computing complexity, we

present a proof of the existence of polynomial-time algorithm

for similarity computation. Secondly, label smoothness be-

tween spatially nearby nodes is usually encouraged. A stan-

dard technique is the combination of Markov field modeling

and min-cut-max-flow optimation [7]. However, for the NP-

hard K-label segmentation (K > 2), variants of the min-cut-

max-flow algorithm such as α-expansion Graph Cuts are es-

pecially time-consuming. Here we adopted an iterative lin-
ear neighborhood propagation (LNP) method for fast local

smoothing. Theoretic analysis is provided to guarantee its

convergence. Thirdly, the proposed method is especially con-

venient for user’s retouching for initial segmentation results,

and outperform many other existing algorithms in multi-label

case (i.e. more than one desired objects to be cut out in an

image.).

2. ALGORITHM

2.1. Confidence Estimation via Connectivity Similarity

As discussed in Section 1, we model images from a perspec-

tive of graph theory. Let V = {xi, i ∈ I} denote the ver-

tex set for an image (each vertex corresponds to a pixel or

super-pixel [8]), where I is the index set. In the context

of interactive segmentation, typically we have the relations

I = IL ∪ IU and IL ∩ IU = ∅ where IL, IU are index

sets for labeled and unlabeled nodes respectively. We connect

two vertices if any of them is among the other’s K-nearest-

neighbors (K is an positive integer) in the spatial sense. By

this means we build the edge set. Denote the constructed

graph as G =< V, E > where V , E represent sets of graph

nodes and edges respectively. The simplest way for graph

construction is treating each pixel as a single node, and de-

fine graph edges over 8-connected neighborhood, which is

adopted in this paper but later we will discuss other candi-

dates for acceleration purpose.

Estimation of edge weights in G is important yet not fully

discussed in related literature. Without confusion, we will use

both the term “distance” and “similarity” in the later sections,

which are essentially equivalent under most situations. It is

convenient to convert distance value to similarity value, and

vice versa. Thus, we can measure edge weight either using

distance dij for node i, j or similarity sij .

A standard method to calculate distance and similarity is

the L2 norm and heat-kernel similarity function, i.e.

dij =‖ xi − xj ‖2, sij = exp(− dij

2σ2
) (1)

However, for transductive segmentation, it is not a good

choice for the case of few seeds provided and large number

of remote nodes away from seeds, since the impact of seeds

decays drastically when spatial distance becomes large. A

distance metric defined basing on not only local distance but

also global data distribution is able to overcome the above-

mentioned problem. Here we adopt connectivity similarity,

which is originally proposed by Fischer etc [9], where this

idea is applied to data clustering. Other applications including

face recognition and automated image segmentation can be

found in [10]. However, to the best of our knowledge, there is

no previous work about incorporating this idea into interactive

segmentation.
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Fig. 2. Illustration for connectivity similarity. We have high-

lighted the effective distance between A and B.

The main idea behind connectivity similarity is to trans-

form elongated structures to compact ones. As can be seen in

Figure 2, according to Equation 1, unknown node A is more

similar to source node C compared with B, since spatial dis-

tance dAB > dAC . However, it contradicts human intuition

since there exists a path connecting A and B (in solid lines in

Figure 2), i.e. A, B may lie on an elongated manifold. For-

mally, let us denote the collections of path in the graph from

vertex i to j as Pij . In order to make two nodes connected

by small-step path more similar, we define effective distance
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for each valid path p ∈ Pij as the maximum step length, and

the final distance between i, j is the minimum value of all

effective distances among all p ∈ Pij , that is:

d̂ij = minp∈Pij

{
max

1≤h≤|p|−1
dp[h]p[h+1]

}
(2)

ŝij = exp(− d̂ij

2σ2
) (3)

Note that here we use different notations d̂ and ŝ from

original d, s in Equation 1. See Figure 2 for an example of

effective distance. In the context of interactive segmentation,

denote the label set as L = {1, 2, ..., Lmax} (note that our

algorithm supports multi-label case, thus Lmax can be greater

than 2) and Li ∈ L is the label of xi. For unlabeled nodes,

theirs labels are initialized as 0 (i.e. unknown). For each

i ∈ IL, we can calculate its connectivity distance to every

unlabeled node in IU . Finally, for each unlabeled node j, we

obtain Lmax distance values in all, each for a unique label in

L, which can be defined as:

dl
j = min

i∈IL,Li=l
d̂ij and sl

j = max
i∈IL,Li=l

ŝij (4)

To illustrate the effect of connectivity similarity more in-

tuitively, we present another example on the standard “two-

spiral” dataset. In Figure 3, hundreds of points are randomly

sampled from positive or negative class (the left subfigure),

and 4 points per class are randomly selected and labeled as

seeds (the right subfigure). Note that if calculating accord-

ing to ordinary Euclidean distance, only those data points

nearby the labeled ones have relatively small distance values,

which ignores the fact that both classes actually lie on a thin,

elongated manifold and inaccurate for classification task. For

comparison, we plot the results obtained using connectivity
distance in Figure 3 (the middle subfigure). It can be seen,

two distinct points, even spatially far away from each other,

seem “near” to the same class.
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Fig. 3. Left: Groundtruth. Right: Partition of unlabeled

nodes (in black) and Labeled nodes (positive class is in red,

while negative class is in blue). Middle: illustration for con-

nectivity distance calculated from the four labeled positive

nodes. Note that remote nodes are also possible to have low

distances. (Enlarge it for better viewing.)

One important issue about connectivity similarity is its

computation complexity. Since the number of nodes in im-

age graph is typically on the order of 104 or even higher, only

polynomial-time algorithm with low degree is computation-

ally acceptable. Based on graph theory, we can derive the

following theorem:

Theorem 2.1. There exists algorithm in polynomial time for
the computation of connectivity similarity.

Proof. The computation can be accomplished by slightly

modifying classical Kruskal’s minimum spanning tree algo-

rithm. In the beginning, edges in graph G are pushed into a

stack in descant order according to their weights defined in

Equation 1. Each pixel is initially treated as a single ”clus-

ter” to be merged. Then the following process is iteratively

performed until the stack is empty or N − 1 edges have been

added into the spanning tree: pop up one element from the

top of stack; denote its weight as dmin. If it link two nodes

which are already in the same cluster, simply abandon it and

run for the next iteration, otherwise it will act as the ”bridge”

to connect two clusters Ci and Cj and should be added into the

final spanning tree. Moreover, for any p ∈ Ci, q ∈ Cj , there

is d̂pq = dmin, otherwise implying existence of another two

clusters that can be merged by a ”bridge” with smaller weight.

For complete input graph with N nodes the computing time

is on the order of O(N2 log(N)).

2.2. Local Smoothing through Linear Propagation

After the computation described in Section 2.1, finally we get

a N×Lmax connectivity similarity matrix Ŝ, where Ŝ(i, l) =
sl

i with definition in Equation 4. Each column vector of Ŝ cor-

responds to all graph node’s confidence values for one specific

label. However, the obtained similarity values are too noisy

to directly perform graph node classification, as can be seen

in Figure 5.

In MRF image modeling, smoothness assumption such as

Ising prior is usually incorporated for outlier removal and lo-

cal averaging. For the multi-label case, direct global opti-

mization can be very time-consuming, even guided by heuris-

tics, thus intolerant for real-time applications such as interac-

tive segmentation. Instead we adopt a recently proposed local

smoothing method named linear neighborhood propagation
(LNP). The intuition behind LNP is that each graph node is

able to iteratively improve its initial estimate by referring to

the weighted averaged value of its neighbors. The key to LNP

is to build the N × N sparse propagation matrix W . The

(i, j)-th entry in W is nonzero only when node j is among

the k-nearest-neighbors of node i. Finally each row of W is

normalized so that
∑

j W(i, j) = 1.

The local smoothing operation proceeds according to the

following formula:

Yt+1 = αWYt + (1 − α)Ŝ (5)

where α ∈ (0, 1) is a free parameter and Y0 is initialized

as Ŝ. The term (1 − α)Ŝ is introduced to stay nearby their
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original values. Computation in Equation 5 is efficient due

to W’s high sparsity. Assume sequence {Yt} converges to a

stable point Y∗, then the final label for node i can be simply

determined via Li = argl maxY∗(i, l). Also we have theo-

retic analysis for its convergence property:

Theorem 2.2. The iterative updating procedure in Equa-
tion 5 will converge to a unique solution Y∗ = (1 − α)(I −
αW )−1Ŝ, where I is unit matrix in RN×N .

Proof. We omit the proof due to space limitation.

3. EXPERIMENTS

Fig. 4. Experimental results. Left: original image with multi-

label user strokes. Middle: results with our proposed method.

Contours of extracted objects are highlighted. Right: results

with GMM based method.

Fig. 5. The first column are original images with user strokes

imposed on. The second column presents binarized results

before local smoothing. And the last two columns are seg-

mentation results after performing 1 and 20 times of local

smoothing operations.

We evaluate the proposed method on the publicly avail-

able BSDS image dataset [11]. The experimental results is

presented in Figure 5 and 4. As can be seen, the proposed

method outperms traditional Gaussian mixture based method,

especially in the multi-label case, and the LNP based local

smoothing operation show its effectiveness to make the ex-

tracted object regions more consistent.

For image with large size, treating each pixel as a distinct

node in the graph G will result in a huge graph, which indi-

cates the above-mentioned procedure will be time-consuming.

To overcome this difficulty, it is better to model a small

adjacently-connected regions in the image as a basic graph

node, i.e. we can first utilize techniques like super-pixel or

watershed algorithm to over-segment the original image into

thousands of small image patches, which results in a graph

with a moderate number of nodes. We omit the super-pixel

based experimental results due to space limitation.

4. CONCLUSION

We present a propagation-based interactive segmentation ap-

proach. It models image as graphs and globally estimates

pairwise similarity via connectivity similarity, thus overcom-

ing the problems of traditional local ones. Our method can

provide comparable accuracy and computing speed compared

with state-of-the-art ones. This work was supported by China

NSF grant No.60573149, Beijing NSF grant No.4072013.
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