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ABSTRACT
Occlusion is one of the major consequences of the physical
image generation process: it occurs when an opaque object
partly obscures the view of another object further away from
the viewpoint. Local signatures of occlusion in the projected
image plane are T-shaped junctions. They represent, in some
sense, one of the most primitive depth information. In this
paper, we investigate the usefulness of T-junctions for depth
segregation in single images. Our strategy consists in incor-
porating ordering information provided by T-junctions into a
region merging algorithm and then reasoning about the depth
relations between the regions of the final partition using a
graph model. Experimental results demonstrate the effective-
ness of the proposed approach.
Index Terms— Image Segmentation, T-junctions.

1. INTRODUCTION

Although the importance of T-junctions has been empha-
sized by Gestalt psychologists [1] and investigated in human
vision, their role is often downplayed in practical applica-
tions. Their usefulness in extracting non-trivial information
about 3D scenes has been recently demonstrated in a variety
of applications such as stereo vision, multiview geometry
and video segmentation [2, 3, 4]. However, the potential of
T-junctions in the single image scenario has been a little ex-
plored until now. This is due partly to the lack of robustness
of T-junction detection without relying on redundant infor-
mation in space or time, and partly to the ambiguity of their
depth interpretations. In fact, whereas all instances of occlu-
sion produce a T-junction [5] (Fig.1 (a)), the converse is not
true. For instance, the T-junctions in Fig.1 (b) are likely the
result of a reflectance discontinuity and not of an occlusion.
Although locally, the region forming the roof of the T ap-
pears to be in front of the ones forming the stem, a complete
assessment of the information carried out by a T-junction is
usually not possible. In this paper however, we attempt to
show that a global analysis allows to solve ambiguities and
to costraint possible consistent interpretations. To this goal,
we have developed a new algorithm for robust T-junction
detection in single images and a new segmentation strategy
based on region merging that integrates ordering information
arisen from T-junctions. Occlusion relationships between the
regions of the final partition are finally encoded through a

Fig. 1. (a) Occluding T-junctions (b) Non-occluding T-junctions

Directed Graph (DG). The depthmap is directly obtained as
transitive reduction of the underlying Directed Acyclic Graph
(DAG). The following section reviews the literature on occlu-
sion reasoning. Section 3 describes the proposed approach.
Section 4 details experimental results while Section 5 reports
the conclusions.

2. RELATEDWORK

Until recently, most work on occlusion reasoning has been
limited to line drawing [6, 7, 8, 9]. Thanks to the introduction
of Markov Random Field (MRF) models, the last decade has
seen an increase of interest in occlusion reasoning for scene
description. Stella et al. [10] developed an ordered parti-
tioning method in spectral graph theory that handles direc-
tional grouping cues. Gao et al. [11] proposed a Bayesian
inference framework that uses a graph representation con-
sisting of two types of nodes, atomic regions and the corre-
sponding terminators of T-junctions, that makes the problem
a Mixed MRF. The most recent works are learning-based ap-
proaches [12, 13, 14]. They all rely on the use of a large
database of images, annotated with human-marked segmen-
tation and depthmap, for training and qualitative evaluation.
Most of these approaches have been tested only on a lim-
ited set of synthetic images [10], or on images previously
segmented by interactive methods [11]. Learning-based ap-
proaches have shown often impressive results, but often they
rely on strong assumptions on the image structure [14], or on
the use of human segmentation [12]. In all cases, they are
obtained using a ratio between the number of test images and
the number of training images almost equal to 1, which may
result in a lack of robustness in real applications.
Here, we propose a framework that does not rely on any

assumption on the image structure neither on intensive learn-
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(a) (b) (c) (d) (e) (f) (g)
Fig. 2. (a) A windowW centered at a candidate point: Ω is the neighborhood we consider unreliable. (b) Partitioning of Ω = Ω1 ∪ Ω2. (c)
Branch extraction inW −Ω. (d) Branch propagation in Ω2. (e) Branch propagation in Ω1. (f) Validated points: The point having the smallest
value of sum of average curvature on each branch is marked in blue. (g) Cluster reduction.

ing strategies and does not require any human marked seg-
mentation. As a first example, we illustrate here the interest
of this framework using only T-junctions as depth cue but the
set of cues will be extended in the future.

3. PROPOSED APPROACH

The method proposed here consists in first detecting T-
junctions, then in partitioning the image preserving the T-
junctions previously detected and, finally, in depth ordering
the regions of the partition.
3.1. T-junction detection

The algorithm for T-junction detection involves three main
steps. A first selection step provides candidate points that rep-
resent potential T-junctions to be characterized and possibly
validated in a second step. The characterization, namely the
branch extraction, is performed on a close surrounding of can-
didate points (W ), omitting a 4x4 neighborhood (Ω) centered
on them (Fig. 2(a)). The obtained branches are then propa-
gated inside Ω according to the good continuation principle
and constrained to meet at the candidate point. This proce-
dure also is supported by psychophysical experiments [15]
suggesting that junctions are detected even when the center
is occluded. Each validated T-junction is assigned a measure
relying on the regularity of its branches, which is used in the
third step, devoted to the reduction of clusters of validated
points.

3.1.1. Candidate point selection

Since T-junctions are structural features, the search for candi-
date points is performed on the structural part of the image,
also called cartoon component, obtained by a simplification
of the original image with a hierarchy of leveling [16]. Can-
didate points are localized by the local filter SUSAN [17]. To
take into account the localization inaccuracy of the local fil-
ter, coordinates of candidate points are allowed to vary on a
small neighborhood. In practice, we apply a dilation on the
mask of candidate points obtained by applying SUSAN. The
branch extraction is applied directly on the original image at
points marked by the mask.

3.1.2. Branch extraction and validation
The branch extraction in (W − Ω) is performed by a region
merging algorithm. Starting from an initial partition of flat

zones, pairs of neighboring regions are iteratively merged fol-
lowing a similarity criterion until a termination criterion is
reached. Each region is modeled by its mean of color val-
ues and the similarity criterion between two regions is the
color distance between the region mean color values. As T-
junctions are modeled by three piecewise constant regions,
called wedges, the merging is done iteratively until three re-
gions are obtained. The region merging strategy does not
guarantee that the three final regions will reach Ω. If this is
the case, the candidate point is discarded. To guarantee the
visibility of each branch and to distinguish from corners, we
impose a threshold on the minimum color difference between
the mean color of each pair of wedges. The branch extrac-
tion in (W − Ω) relies on photometric information. How-
ever, inside Ω, where the photometric profile is unreliable,
it is achieved in two steps (first in Ω1 and then in Ω2, see
Fig.2(b)) using a curvature-based criterion that minimizes the
sum of the absolute curvature at the new branch points created
by the hypothetic labeling, with the constraint that branches
meet at the candidate point (Fig.2(c) and Fig.2(d)). The cur-
vature at the candidate point is computed eliminating the stem
of the candidate T-junction.

To validate the candidate point three different criteria have
to be fitted. The first criterion is geometrical. In most cases
corresponding to spurious T-junctions, one wedge is com-
posed of a very small number of pixels or looks like a nar-
row band. We then use a ”size criterion” that is as follows:
if at least one region completely disappears after an erosion
(binary) with a structuring element, then the candidate point
is discarded. The structuring element is a square whose size
s is related to the size w ofW . To allow keeping T-junctions
whose contours converging at the junction center form a small
angle, s is taken as follows: w

4 − 1. The second criterion
deals with the branches orientation and is necessary in order
to distinguish from other junction types. For each branch, we
first compute the vector that represents its medium orienta-
tion in W and then the angles between each pair of vectors.
We say that a candidate point represents a T-junction if there
is a pair of vectors such that the angle between them is equal
to π with precision

1
4
. The third criterion relies on the the

assumption that object contours and thus T-junction branches
are smoothed. A branch is considered to be smooth if the
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(a) (b) (c) (d)
Fig. 3. (a) Partitioned image (b) Associated DG (c) Associated DAG (d) Hasse diagram resulting from the transitive reduction of the DAG

value of the integral of the absolute curvature on the three
branches is below to a given threshold k, which is computed
as follows: k = wc, where c corresponds to a curvature close
to zero. w addresses the scale issue. Its minimum value is 16.

3.1.3. Cluster reduction

As result of the validation step we often obtain clusters of
validated points (Fig. 2 (f)). In fact, the wedge shape of
neighbors candidate points varies smoothly and if a candi-
date point is validated, its neighbors have a high probability
of being validated too. We solve this problem by selecting,
for each cluster, the candidate point that minimizes the sum
of the branch curvature.

3.2. Segmentation

The next step consists in computing a partition of the im-
age through region merging but preserving T-junctions. The
merging order we use is mainly defined by a statistical mea-
sure on the regions [18] and each region is modeled by its
color histogram. In order to preserve T-junctions, we intro-
duce the concept of incompatibility. Two regions are said in-
compatible if they are wedges of a T-junction and therefore
cannot be merged. As will be shown in Section 4, the incom-
patibility derived from T-junctions improves the segmentation
quality since it preserves low-level data structure.

3.3. Depth Ordering

The goal of this last step is to construct a global and consis-
tent interpretation from the local depth assessment previously
obtained. In Fig. 3 (a) there is an example of first order in-
consistency (involving a pair of T-junctions). Region C is in
front of region A for one T-junction, while the converse is
true for the other. Higher order inconsistencies involve more
than two T-junctions. We formalize the problem of finding a
global consistent solution through a DG. A DG is specified
by DG = (V,EA, A), where V is a set of nodes, E is a set
of edges and A is the matrix of weights attached to the edges.
In our formalization, each node represents an image region
and each directed edge represents the relative depth relation
between two regions. Edges are specified as ordered pairs:
an edge e = (x, y) ∈ E is considered to be directed from
x to y meaning that the region x is in front of the region y.
The weight attached to each edge corresponds to the number
of occurrences the depth relation represented by the edge has

been inferred from different occlusion relationships. For in-
stance, the weight of the edge (C,A) is 2, whereas the weight
of the edge (A,C) is 1. With this formalization, local con-
straint are allowed to propagate along the graph and the search
for inconsistent pairs of T-junctions is reduced to the search
of cycles on the DG (dashed thick red arrows in Fig.3(b)).
The search for directed cycles is performed by a Depth-First
Search (DFS) algorithm [19]. Inconsistencies are solved by
suppressing the edge(s) on the cycle with lowest cost. Since
the depth relation associated to the edge with the lowest cost
is considered unreliable, the other edge (dashed thin blue ar-
row in Fig.3(b)) associated with the T-junction from which
the unreliable depth relation arise is also removed. As a re-
sult, a DAG is obtained. The depth map is exactly the Hasse
Diagram (HD) corresponding to the transitive reduction of the
DAG. The transitive reduction of a DAG removes redundant
edges while maintaining identical reachability properties. An
edge e(x, y) is said redundant if there is a path from x to
y that does not contain the edge. The HD is constructed as
follows: for e(x, y) belonging to the DAG, x is positioned
higher than y; the edge e(x, y) is drawn if and only if it is not
redundant. The transitive reduction of a finite DAG is unique.
Since there is no depth order between the regions forming the
stem of a T-junction, they appear on the HD as as leaves (A
and B), without any information about their respective depth,
unless of course, an order between them can be inferred by
other T-junctions.

4. EXPERIMENTAL RESULTS

We tested our algorithm on a set of real images. For each
experiment we show four images: the original image; a
gray level version of the original image where detected T-
junctions are represented through a vector pointing to the
roof; the segmented image; the depthmap, which is rendered
as a gray level image (high values indicate regions closer
to the viewpoint). In all experiments, we segmented the
image until only regions involved in at least one occlusion
relation are obtained(Fig.4(c)). As can be observed in all
examples (Fig.4(d)), the last level of depth includes two or
more regions, corresponding to leave nodes of the HD. In the
example on the last row, there is a case of conflict between the
regions E and C: while region E is interpreted as foreground
and region C as background for one T-junctions, the contrary
is true for two T-junctions. The solution of this conflict leads
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(a) (b) (c) (d)
Fig. 4. Example of depth segregation.(a) Original image (b) T-junction detection (c) Segmentation (d) Depth ordering

to a correct depth interpretation. The results obtained for the
last two examples would be improved by integrating into the
proposed framework more monocular depth cues, such as
convexity, size cues and texture gradient.

5. CONCLUSIONS
In this paper, we have proposed a new approach for depth
segregation in single images. Contrary to the state of art, our
method is fully automatic and does not make any assump-
tion on the image structure. Local depth ordering arising
from T-junctions is incorporated into a region merging pro-
cess avoiding regions in occlusion to merge. The regions of
the final partition and their relative depth relations are then en-
coded through a DG. Using this formalization, possible con-
flicting interpretations are easily detected as cycles on the
DG and solved leading to a DAG. The depthmap is then ob-
tained as the Hasse Diagram corresponding to the transitive
reduction of the DAG. Moreover, beside T-junctions, the pro-
posed framework can incorporate several monocular depth
cues such as convexity, size, texture gradient, etc. Future
work will be devoted to the inclusion of some of these cues to
improve the robustness of the proposed method and to obtain
a more detailed depthmap.
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