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ABSTRACT
Distributed synchronization is known to occur at several scales

in the brain, and has been suggested as playing a key functional

role in perceptual grouping. State-of-the-art visual grouping al-

gorithms, however, seem to give comparatively little attention

to neural synchronization analogies. Based on the framework

of concurrent synchronization of dynamic systems, simple net-

works of neural oscillators coupled with diffusive connections

are proposed to solve visual grouping problems. The same al-

gorithm is shown to achieve promising results on several clas-

sical visual grouping problems, including point clustering, con-

tour integration and image segmentation.

Index Terms— visual grouping, neural oscillator, synchro-

nization, segmentation, clustering.

1. INTRODUCTION
Consider Fig. 1. Why do we perceive in these visual stimuli a

cluster of points, a straight contour and a hurricane? How is

the identification performed between a subgroup of stimuli and

the perceived objects?

Fig. 1. Left: a cloud of points in which a dense cluster is embed-

ded. Middle: a random direction grid in which a vertical contour is

embedded. Right: an image in which a hurricane is embedded.

Many physiological studies, e.g. [5], have shown evidence

of grouping in visual cortex. Gestalt psychology [9], an at-

tempt to formalize the laws of visual perception, addresses

some grouping principles such as proximity, good continua-

tion and color constancy, in order to describe the construction

of larger groups from atomic local information in the stimuli.

In the brain, at a finer level of functional detail, the dis-

tributed synchronization known to occur at different scales has

been proposed as a general functional mechanism for percep-

tual grouping [1, 13, 16]. In computer vision, however, com-

paratively little attention has been devoted to exploiting neural-

like oscillators in visual grouping (see [3, 12] for example).

Wang and his colleagues have performed very innovative work

using oscillators for image segmentation [2]. They constructed

oscillator networks with local excitatory lateral connections

and a global inhibitory connection. Yen and Finkel [17] simu-

lated facilitatory and and inhibitory interactions among oscilla-

tors to do contour integration. Li has proposed elaborate visual

cortex models with oscillators [8] and applied them on lattice

drawings. Kuzmina and his colleagues [7] have constructed a

simple self-organized oscillator coupling model, and applied it

on synthetic lattice images as well. Faugeras et al. have started

studying oscillatory neural mass models in the contexts of nat-

ural and machine vision [4].

In this paper we propose a simple and general neural os-

cillator algorithm for visual grouping, based on diffusive con-

nections [11]. We use full-state neural oscillator models rather

than phase-based approximations. The key to our approach is

to embed the desired grouping properties in the couplings be-

tween oscillators. This allows one to exploit existing results on

visual grouping and Gestalt while at the same time taking ad-

vantage of the flexibility and robustness afforded by synchro-

nization mechanisms. Synchronization of oscillators induces

perceptual grouping while desynchronization leads to segrega-

tion. Applications to point clustering, contour integration, and

segmentation of synthetic and real images are demonstrated.

A recent study of stable concurrent synchronization of neu-

ral oscillators [11] provides a general analysis tool to model

the associated nonlinear dynamics and study their convergence

properties.

Section 2 introduces a basic model of neural oscillators

with diffusive coupling connections and proposes a general vi-

sual grouping algorithm. Sections 3, 4 and 5 describe in detail

the neural oscillator solutions for point clustering, contour in-

tegration and image segmentation and show a number of exam-

ples. The results are compared with normalized cuts, a popular

computer vision method [3, 12]. Section 6 presents brief con-

cluding remarks.

2. MODEL AND ALGORITHM
The model is a network of neural oscillators coupled with dif-

fusive connections. Each oscillator is associated to an atomic

element in the stimulus, such as a point, an orientation or a

pixel. Without coupling, the oscillators are desynchronized and

oscillate in random phases. Under diffusive coupling with the

coupling strength appropriately tuned, they may converge to

multiple groups of synchronized elements. The synchroniza-

tion of oscillators within each group indicates that perceptual

grouping of the underlying stimulative atoms, while the desyn-

chronization between groups suggests group segregation.
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2.1. Neural Oscillators

We use a modified form of FitzHugh-Nagumo neural oscilla-

tors [6, 10], similar to [2],

v̇i = 3vi − v3
i − v7

i + 2− wi + Ii (1)

ẇi = c[α(1 + tanh(βvi))− wi] (2)

where vi is the membrane potential of the oscillator, wi is an

internal state variable representing gate voltage, Ii represents

the external current input, and α, β and c are strictly positive

constants (we use α = 12; c = 0.04; β = 4). When the in-

put Ii exceeds a certain threshold value, the neural oscillator

oscillates, the trace of membrane potential vi being plotted in

Fig. 2-a. Other spiking oscillator models can be used similarly.

In the neural oscillator networks for visual grouping, each os-

cillator is associated to an atomic element in the stimuli.

2.2. Diffusive connections

Oscillators are coupled using diffusive connections with Gaussian-

tuned gains to form networks.

Let us denote by xi = [vi, wi]T the state vectors of the os-

cillators introduced in section 2.1, each with dynamics ẋi =
f(xi, t). A neural oscillator network is composed of N oscilla-

tors, connected with diffusive coupling [15]

ẋi = f(xi, t) +
∑
i �=j

kij(xj − xi), i = 1, . . . , N (3)

where kij is the coupling strength.

Oscillators i and j are said to be synchronized if xi re-

mains equal to xj . Once the elements are synchronized, the

coupling terms disappear, so that each individual element ex-

hibits its natural, uncoupled behavior, as illustrated in Fig. 2.

It is intuitive to see that a larger kij value facilitates and rein-

forces the synchronization between the oscillators i and j (refer

to [11, 15] for more details).

a b
Fig. 2. a. a single oscillator. b. synchronization of two oscillators

coupled through diffusive connections. The two oscillators start to be

fully synchronized at about t = 5.

The key to applying neural oscillators with diffusive con-

nections to visual grouping is to tune the coupling so that the

oscillators synchronize if their underlying atoms belong to the

same visual group, and desynchronize otherwise. According

to Gestalt psychology [9], visual stimulus atoms of similarity

or proximity tend to be grouped perceptually. This suggests

that the coupling between the neural oscillators should be re-

inforced if they have similar stimuli. Such coupling can be

implemented by the Gaussian tuning

kij = e
−|si−sj |2

β2 . (4)

where si and sj are stimuli of the two oscillators, for example

position for point clustering, orientation for contour integra-

tion and grey-level for image segmentation, and β is a tuning

parameter.

2.3. Concurrent Synchronization and Stability

In perception, fully synchronized elements in each group are

bounded, while different groups are segregated. Concurrent

synchronization analysis provides a mathematical tool to study

stability and exponential convergence properties in this context.

In an ensemble of dynamical elements, concurrent synchro-

nization is defined as a regime where the whole system is di-

vided into multiple groups of fully synchronized elements, but

elements from different groups are not necessarily synchro-

nized [11]. Networks of oscillators coupled by diffusive con-

nections are specific cases of this general framework. It can

be shown that with appropriate coupling gains, the networks

converge to concurrent synchronization with high convergence

rates. The reader is referred to [11] for more details on the

analysis tools.

2.4. Visual Grouping Algorithm

The basic visual grouping algorithm proceeds in the following

steps.

1. Construct a neural oscillator network. Each oscillator

is associated to one atom in the stimuli. Oscillators

are connected with diffusive connections (3) using the

Gaussian-tuned gains (4).

2. The oscillators converge to concurrently synchronized

groups in the so-constructed network.

3. Identify the synchronized oscillators and equivalently

the visual groups. A group of synchronized oscillators

indicates that the underlying visual stimulative atoms

are perceptually grouped. Desynchronization between

groups suggests that the underlying stimulative atoms in

the two groups are segregated.

Traces of synchronized oscillators coincide in time, while

those of desynchronized groups are separated [14]. The iden-

tification of synchronization in the oscillation traces (as illus-

trated in the example of Fig. 3-b) can be realized by threshold-

ing the correlation of the traces [17] or by simply applying a

clustering algorithm such as k-means.

3. POINTS CLUSTERING
Let us denote yi = (xi, yi) the coordinates of a point pi. Each

point pi is associated to an oscillator xi. The proximity gestalt

principle [9] suggests strong coupling between oscillators cor-

responding to proximate points. More precisely, the coupling

strength between xi and xj is

kij =

{
e
−|yi−yj |2

β2 if j ∈ Ni

0 otherwise
, (5)

where Ni is a neighborhood of pi. For example Ni can be

defined as the set of M points closest to pi. Then (5) couples an

oscillator xi with its M nearest neighbors. The local coupling

can propagate to make the coupling in a larger scale. Higher

M value reinforces the coupling. The parameter β tunes the

size of the clusters one expects to detect. The external inputs Ii

of the oscillators in (1) are set as uniformly distributed random

variables in the appropriate range.
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Fig. 3 illustrates an example in which the points clearly

make two clusters. As shown in Fig. 3-b, the oscillator system

converges to two concurrently synchronized groups, each cor-

responding to one cluster, and separated in the time dimension.

The identification of the two groups induces the clustering of

the underlying points, as shown in Fig. 3-c.

a b c
Fig. 3. a. Points to cluster. b. The oscillators converge to two con-

currently synchronized groups. c. Clustering results. The blue circles

and the red crosses represent the two clusters.

Fig. 4 presents a more challenging setting where one seeks

to identify a cluster in a cloud of points. The cloud is made

of 300 points uniformly randomly distributed in a space of

size 100 × 100, in addition to a cluster of 100 Gaussian dis-

tributed points with standard deviation equal to 3×3. Thanks to

the coupling (5), the neural oscillator system converges to one

synchronized group that corresponds to the cluster with all the

“outliers” totally desynchronized in the background, as shown

in Fig. 4-b. The synchronized traces are segregated from the

background by thresholding the correlation among the traces

(threshold = 0.99) [17] which results in the identification of the

underlying cluster, as shown in Fig. 4-c. The result of nor-

malized cuts [12] is illustrated in Fig. 4-d: a large number of

outliers are confused to the cluster of interest.

a b c d
Fig. 4. a. A cloud of points made of 300 points uniformly randomly

distributed in a space of size 100× 100, in addition to a cluster of 100

Gaussian distributed points with standard deviation equal to 3 × 3.

b. The neural oscillator system converges to one synchronized group

that corresponds to the cluster with all the “outliers” totally desynchro-

nized in the background. c. and d. Clustering results by respectively

neural oscillators and normalized cuts: blue dots represent the cluster

detected by the algorithm and red crosses are the “outliers”. In the

latter many outliers are confused to the cluster of interest.

4. CONTOUR INTEGRATION
Fig. 5 shows the setting of the contour integration experiments.

An orientation value oi ∈ [0, 2π) is defined for each element

i = (i, j) in a grid as illustrated by the arrows. Each orientation

in the grid is associated to one oscillator. The coupling of the

oscillators i and j follows the Gestalt law of “good continua-

tion” and, in particular, the results of the psychovisual experi-

ments of Field et al [5]:

kij =

⎧⎨
⎩ exp

(
− |oi−oj|2

δ2 − | oi+oj
2 −oij|2

γ2

)
if |i− j| ≤ w

0 otherwise

.

(6)

where

oij =

⎧⎨
⎩

arctan(i − j) if | arctan(i − j) − |oi+oj|
2 |

< | arctan(i − j) + π − |oi+oj|
2 |

arctan(i − j) + π otherwise

is the undirectional orientation of the path ij (the closer to the

average element-to-element orientation
|oi+oj|

2 modulo π). By

making smoothness constraints on the element-to-element an-

gle (the first term in (6)) and the element-to-path angle (the sec-

ond term in (6)), the neural oscillator system provides smooth

contour integration, with δ and γ tuning the smoothness of the

detected contour. Contour integration is known to be rather lo-

cal [5], and the coupling (6) is effective within a neighborhood

of size (2w+1)× (2w+1). In the experiments the parameters

are chosen as δ = 20◦, γ = 10◦ and w = 1, in line with the

results of the psychovisual experiments of Field et al [5].

Fig. 5-a shows a grid in which orientations are uniformly

distributed in space, except for one vertical contour. The ori-

entation of the elements on the vertical contour undertakes fur-

thermore a Gaussian perturbation of standard deviation σ =
10◦. The neural oscillator system converges to one synchro-

nized group that corresponds to the contour with all the other

oscillators desynchronized (the traces are similar to Fig. 4-b).

As in [17], the synchronized group is segregated by threshold-

ing the correlation among the traces (threshold = 0.99). This

results in the “pop-out” of the contour shown in Fig. 5-b. As

shown Fig. 5-c, the multiscale normalized cut [3] does not suc-

ceed in segregating the contour from the background. Fig. 6

illustrates a similar example with two intersected straight con-

tours.

a b c

Fig. 5. a. A vertical contour is embedded in a uniformly distributed

orientation grid. b. and c. Contour integration by respectively neural

oscillators and normalized cuts.

a b c

Fig. 6. a. Two contours embedded in a uniformly distributed orien-

tation grid. b. and c. the two contours identified by neural oscillators.

Fig. 7-a illustrates a smooth curve embedded in the uni-

formly randomly distributed orientation background. With

some minor effort, subjects are able to identify the curve due to

its “good continuation”. Similarly the neural system segregates

the curve from the background with the oscillators lying on the

curve fully synchronized, as illustrated in Fig. 7-b.

5. IMAGE SEGMENTATION
One oscillator is associated to each pixel in the image. Within

a neighborhood the oscillators are non-locally coupled with a

coupling strength
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a b

Fig. 7. a. A smooth curve is embedded in a uniformly distributed

orientation grid. b. The curve detected by neural oscillators.

kij =

{
e
−|ui−uj|2

β2 if |i− j| < w
0 otherwise

. (7)

where ui is the pixel gray-level at coordinates i = (i, j) and w
adjusts the size of the neighborhood. Pixels with similar grey-

levels are coupled more tightly, as suggested by the color con-

stancy gestalt law [9]. Non-local coupling plays an important

role in regularizing the image segmentation, with a larger w re-

sulting in more regularized segmentation and higher robustness

to noise.

Fig. 8-a illustrates a synthetic image (the gray-levels of the

black, gray and white parts are 0, 128, and 255) contaminated

by white Gaussian noise of moderate standard deviation σ =
10. The segmentation algorithm was configured with β = σ
and w = 5. The oscillators converge into three concurrently

synchronized groups as plotted in Fig. 8-b which results in a

perfect segmentation as shown in Fig. 8-c.

a b c
Fig. 8. a. A synthetic image (the gray-levels of the black, gray and

white parts are respectively 0, 128, 255) contaminated by white Gaus-

sian noise of standard deviation σ = 10. b. The traces of the neural

oscillation. The oscillators converge into three concurrently synchro-

nized groups. c. Segmentation result.

Fig. 9 show some natural image segmentation examples

in comparison with the multiscale normalized cuts [3]. Both

methods obtain rather regular segmentation with hardly any

“salt and pepper” holes. The segmentation obtained by neu-

ral oscillators seems more delicate and closer to human per-

ception: in the sagittal MRI (Magnetic Resonance Imaging),

salient regions such as cortex, cerebellum and lateral ventri-

cle are segregated with good accuracy; in the radar image, the

cloud boundaries and eye of the hurricane are more precisely

segregated.

6. CONCLUDING REMARKS

Inspired by neural synchronization mechanisms for perceptual

grouping, simple networks of neural oscillators coupled with

diffusive connections are proposed for visual grouping, and are

compared to more standard methods such as graph cuts. The

same general algorithm is shown to achieve promising results

on several classical visual grouping problems, including point

clustering, contour integration and image segmentation.

Fig. 9. Real image segmentation. From top to bottom, left to right: a

sagittal MRI image (128× 128); segmentation in 15 classes by neural

oscillators and multiscale normalized cuts; a radar image (128×128);

segmentation in 20 classes by neural oscillators and multiscale nor-

malized cuts.
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