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ABSTRACT

The LCD deblurring problem is considered as a simple
bounded quadratic programming problem and is solved us-
ing conjugate gradient with early stopping criteria to avoid
excessive search. A decimation and interlace interpolation
method is introduced to reduce the computing time. Solu-
tions are competitive to those the generated by conventional
Lucy Richardson algorithm, but using much shorter amount
of time. The method can be extended to higher decimation
factors. Visual subjective tests are conducted to justify our
proposed method.

Index Terms— LCD, motion blur, inverse problem, opti-
mization, decimation.

1. INTRODUCTION

Liquid Crystal Display (LCD) differs from traditional cath-
ode ray tube (CRT) display by its sample and hold behavior
versus the CRT’s impulse driven behavior. Such sample and
hold behaviors cause motion blur in video. In [1], Har-Nor
et al demonstrated a novel signal processing strategy to pre-
process the video signal such that the video sequence is over-
sharpened. When it is subjected to the motion blur, the output
would be close to the target video. The main algorithm that
Har-Nor et al applied is standard Lucy Richardson (LR) algo-
rithm [2] (using MATLAB routine deconvlucy). Though
the results are satisfactory, the computing time is long. In this
paper, we propose a new approach that reduces the computa-
tional time significantly while retaining visual performance.
We consider the problem as an optimization problem.

First, as in most classical deblurring algorithms we are go-
ing to assume linear shift invariant image system. Thus for
an m × n image x, and a point spread function (PSF) h, the
output would be given by y = h�x, where � denotes a convo-
lution operator. In linear algebra words, if we stack columns
of x as anmn×1 vector, and letA be the convolution matrix,
then given the target b ∈ R

mn×1 we would like to solve the
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following optimization problem:

minimize
x∈Rmn

‖Ax − b‖2
2 (1)

subject to 0 ≤ x ≤ 1. (2)

The simple bound constraint 0 ≤ x ≤ 1 is posed to limit the
magnitude of the pixels to not exceeding 1 and 0.
This quadratic programming problem is difficult because

it has a huge number of variables (medium sized image with
1000 × 1000 pixels will have 1 million variables). Therefore
a good algorithm for this problem
1. should be fast;
2. does not need to store matrices A, and AT ;
3. can give visually satisfactory results (not only PSNR).
Based on these criteria, we propose to down sample the im-
ages and then apply conjugate gradient algorithm for the con-
strained optimization. The solution will be reconstructed us-
ing an interlace interpolation method. The image quality by
the proposed method is as good as the one generated by LR,
but using significantly shorter time.
The organization of this paper is as follows. In section 2

we will describe the main blocks of our algorithm. In sec-
tion 3 we will extend the factor to arbitrary integers. Some
experimental results are shown in section 4, and a concluding
remark will be given in Section 5.

2. INTERLACE INTERPOLATION

2.1. Overall system

Human eyes pay much more attention to horizontal motions
than vertical motions. Therefore, in this paper we assume
that the PSF is horizontal (if not, we can approximate the PSF
with a separable PSF and take its x-component). Then, since
the rows are independently convolved, we can treat one row
at a time. Also, since adjacent frames of a video are highly
correlated, it is possible to consider only a few rows of the
current frame, and reconstruct the remaining from its adjacent
frames.
Fig. 1 shows the block diagram to compute one frame.

For the kth (k is even) frame Ik, the image is first down sam-
pled and only the even rows are taken. Denote it by (Ik)even.
Then (Ik)even is passed into conjugate gradient algorithm to
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(Îk)even (Îk−1)odd

Ik+1 ↓ 2 CG Reconstruction (Îk)full

(Ik+1)odd (Îk+1)odd

Fig. 1. Block diagram of our proposed fast inverse compu-
tation. We inverse compute the desired image for (Ik+1)odd,
and use previous information (Ik−1)odd and (Ik)even to re-
construct the current frame (Ik)full. When proceeding to the
next frame, we swap the odd and even indices.

obtain the inverse solution (Îk)even. The subscript even is
used to emphasize that (Îk)even has only half number of rows
as Îk (to be determined). If k is odd, the roles of even and odd
in the above will be swaped.
Suppose the current solution to be reconstructed is Ik.

From previous iterations the full size solution (Îk−1)full can
be obtained. Since previously when (Îk−1)full was recon-
structed the kth inverse solution (Îk)even had already been
computed, in the kth frame reconstruction there is not need
to re-compute it again. However, the k + 1th inverse solution
to reconstruct (Îk)full is needed. Therefore, we apply con-
jugate gradient to the decimated image (Ik+1)odd and obtain
the inverse solution (Îk+1)odd. Then the three decimated in-
verse solutions {(Îk−1)odd, (Îk)even, (Îk+1)odd} are passed
to the reconstruction scheme and the kth reconstructed image
can be obtained.

2.2. Interlace Interpolation

The interlace interpolation method is shown in Fig. 2. Hav-
ing the inverse solution (Îk−1)odd, (Îk)even, and (Îk+1)odd,
we would like to fill in the unknown rows of (Îk)even. First
assume that the frames are motion compensated (using linear
motion compensation) and aligned on the same pixel. Con-
sider the corresponding pixels of the k − 1th frame and the
k + 1th frame, the upper and lower pixel of the kth frame.
The solution can be estimated as

(Îk)full(m, n)

= 0.4(Îk−1)odd(m, n) + 0.4(Îk+1)odd(m, n)

+ 0.1(Îk)even(m, n + 1) + 0.1(Îk)even(m, n − 1).

Note that this is a weighted sum of the four corresponding
pixels, where the weights are empirically justified.

2.3. Conjugate Gradient

The main algorithm in this paper is conjugate gradient. It can
be summarized as [3]:

(Îk−1)odd (Îk)even (Îk+1)odd

Fig. 2. Proposed linear interpolation method. To distin-
guish the known pixels from the unknown pixels we shaded
the known ones. We take weighted mean of the correspond-
ing pixels from previous frame (Îk−1)odd(m, n), next frame
(Îk+1)odd(m, n), upper pixel Îkeven(m, n + 1) and lower
pixel Îkeven(m, n − 1). Here we assume that the previous
and the next frames are motion compensated.

Initial Condition
Given x0, set
r0 ← Ax0 − b, p0 ← −r0, k ← 0

While rk �= 0

αk ←
rT

k rk

pT
k

Apk

xk+1 ← xk + αkpk

x =

{
1 x > 1

0 x < 0

rk+1 ← rk + αkApk

βk+1 ←
rT

k+1rk+1

rT
k

rk

pk+1 ← −rk+1 + βk+1pk

k ← k + 1

End
There are a few implementation issues that we

experienced:
The matrix vector products Ax can be obtained by Fast

Fourier Transform based convolution: Given any PSF h and
an image x, we first find their Fourier Transforms
h̃ = F[h] and x̃ = F[x] so that the output can be found as
Ax = F−1[h̃ · x̃], where · is element-wise multiplication. In
MATLAB this can be done by calling

Ax = imfilter(x, h, ‘replicate’);

The second remark is the stopping criteria. In this problem,
we found that the marginal benefit of each additional
iteration after 10 iterations is small. Thus an early stop is
sufficient for us to get a satisfactory solution. Typically, we
stop the iteration when either

max_itr >= 10, or, obj_val <= 1e-4.

The third remark concerns about the initialization. Since
there are strong correlations between adjacent frames, the
solution of the previous frame can be served as an initial
guess for the next frame. In experience this strategy can
speed up the computation.
To compare performance of standard Lucy Richardson

and our proposed conjugate gradient method we plot two
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graphs in Fig. 3. Fig. 3a shows the computing time of the
two algorithms. As shown, the conjugate gradient is much
faster than deconvlucy. Fig. 3b shows that conjugate
gradient improves PSNR when number of iterations
increases. At 10 iterations (which is our stopping criteria)
CG algorithm is almost as good as LR algorithm.
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Fig. 3. Comparison between proposed conjugate gradient
method and Lucy Richardson using deconvlucy. (a) Com-
putation time: Our method is significantly faster than Lucy
Richardson. (b) PSNR: Our method improves to a level
as good as Lucy Richardson when number of iterations in-
creases.

3. L TIMES DECIMATION

In this section the above proposed framework is extended to
a higher decimation factor. In other words, we will
demonstrate the method to down sample the image by L

times, and then use L adjacent frames to reconstruct the
solution.
For every L frames, the k-th image (1 ≤ k ≤ L) is

sampled as I(k : L : M, :), whereM is number of rows of
the original sized image, and the MATLAB index notation
(k : L : M, :) means to pick all rows from k toM with
interval of every L rows.
Consider the k-th frame reconstruction. Suppose L

frames {Ik−L/2+1, Ik−L/2+2, . . . , Ik, . . . , Ik+L/2} are
available from the conjugate gradient algorithm, and each of
which is L times row decimated. We first register these
frames so that the subpixels are aligned with the frame under

reconstruction Ik . Since rows in one of these frames do not
present in any of the other frames, the concatenation of all
these L frames will form a full sized image. We do not use
the information from the upper and lower pixel because
when L is large, they will be too far (spatially vertical
direction) from the pixel under consideration so they become
irrelevant.
Fig. 4a shows the degradation of PSNR when the

decimation factor is increased. As L increases, the separation
between the current frame and the L-th frame also increases
so the error from linear subpixel registration becomes larger.
Since the pixels are not aligned well, PSNR decreases.
Fig. 4b shows the comparison of computing time versus

the decimation factor. There are three key observations:
First, the computing time of interlace interpolation is linearly
increasing (a simple regression is performed to fit the
observed data). Second, the conjugate gradient computing
time decreases and reaches a steady state when decimation
factor increases. This can be explained as when L becomes
large, the time reduction from L times to L + 1 times
becomes negligible, which implies that there is no need to
decimate by a large factor. Third, the overall computing time
shows that there is an optimum at a decimation factor of 4.
This implies that further decimation beyond a factor of 4 is
not worthwhile because the time spent on interlace
interpolation would overwhelm the time saved in conjugate
gradient.

4. EXPERIMENTAL RESULTS

We now show a few computational results of our algorithm.
Given an image, without performing any inverse
computation the resultant image is blurred and is shown in
Fig. 5a (PSNR = 35.0325dB). When applied standard Lucy
Richardson and passed the solution through the PSF the
resultant image is sharper, as shown in Fig. 5b (PSNR =
43.0294dB). Now, with our proposed method (using 10
iterations) we can obtain a resultant image as shown in Fig.
5c (PSNR = 42.2307dB). This image is sharper, especially
around the edges of the buildings. Lastly, Fig. 5d shows the
result using decimation L = 2 (PSNR = 41.4568dB). Despite
the small degradation in PSNR, visually the difference
between full scale CG and decimation by 2 is very small.
In addition to the PSNR comparison we also conducted

visual subjective tests on 17 audience (N = 17). Using the
same hardware setup as in [1] the audience are given 6 pairs
of video sequences ((i) original and LR or (ii)original and
proposed method). Audience is asked to give score based on
a scale [-3, 3] where 0 represents “the same”, 3 represents
“much better” and−3 represents “much worse” [4].
Statistical results 1 are shown in Table 1. To show that

the means of L andD are very similar we first let null

1http://videoprocessing.ucsd.edu/˜stanleychan
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Fig. 4. Performance of L times decimation. (a) PSNR: PSNR
drops as the decimation factor increases. (b) Computation
time: The total computation time is the sum of conjugate gra-
dient and interlace interpolation. Minimum exists when num-
ber of iterations is 4.

hypothesisH0 : μL = μD and alternativeH1 : μL �= μD .
Let 99% confidence interval (α = 0.01). Using t-distribution
tables we found that tα/2,N+N−2 = 2.763. ThusH0 is
accepted if −2.763 < t < 2.763 where t = x̄L−x̄D

Σp
and

Σp =
σ2

L+σ2
D

2

√
1

N + 1

N . Using the values above we found
that t = 0.227,−0.154,−0.177 respectively. ThereforeH0

is accepted and we can conclude that the proposed method is
able to give similar results to LR but in a much shorter time.

5. CONCLUSION AND FUTURE RESEARCH

We formulated the LCD deblurring problem as an
optimization problem. We proposed conjugate gradient with
decimation and interlace interpretation method to speed up
the computation. Results show that performance of our
method is significantly faster than MATLAB’s
deconvlucy, with similar subjective performance.

As for future research, one can pay attention to the
spatial coherence because the current method is unable to
give spatially smooth images. Adding some regularization
term to objective function may be a feasible way.

(a) Without optimization (b) Lucy Richardson

(c) Proposed CG (d) Proposed CG + decimation

Fig. 5. Motion blur of various resultant images. (a) Us-
ing original unprocessed image. (b) Using Lucy Richardson
deconvlucy with 10 iterations. (c) Using full scale conju-
gate gradient. (d) Using conjugate gradient with decimation
factor 2.

Video Name x̄i σi

Stockholm L 1.206 1.016
Text L 1.235 1.091
Shield L 1.735 0.664

StockholmD 1.294 1.047
TextD 1.176 0.951
ShieldD 1.706 0.686

Table 1. Statistical results of visual subjective test on a scale
of [−3, 3]. A positive value indicates that the audience prefer
a processed video than the original. Notation L means Lucy
Richardson, andD means our proposed decimation method.
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