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ABSTRACT 

 
This paper targets denoising of digital photos taken by cameras 
with unknown sensor parameters and image processing pipeline. 
Common noise characteristics in such images originate from 
camera-internal processing, such as demosaicing, tone mapping, 
and JPEG compression. Three of the noise characteristics that are 
not adequately addressed by existing denoising algorithms are 
spatially correlated low-frequency noise, strong signal dependency 
of the noise level and high levels of the chrominance noise relative 
to the luminance noise. We propose a generic scheme that extends 
existing denoisers such as the bilateral filter to account for all the 
problems above. Our solution combines a novel progressive 
pyramidal filtering scheme to address the correlated noise, filter 
adaptation via local noise level estimation and luminance-guided 
chrominance filtering to address the low-SNR of the chrominance 
channels. We demonstrate the effectiveness of our solution for 
challenging realistic noisy photos.    

Index Terms— Noise filtering, denoising, correlated noise, 
signal-dependent noise, chromatic noise, and multi-resolution 

1. INTRODUCTION 
The goal of image denoising is to filter out as much noise as 

possible with as little degradation as possible in the underlying 
image. The majority of the state-of-the-art denoising methods 
focus their efforts on the difficult task of modeling the signal 
statistics and assume the simplest model for the noise: Additive-
White-Gaussian-Noise (AWGN), which is uncorrelated, signal-
independent and position independent [1,4,5,12]. Other works on 
denoising target more complex noise models that are assumed to 
be known to the denoiser [9]. 

The simplistic noise models are not valid for images captured 
by the digital cameras or similar devices. Typically, raw image 
data are captured by a sensor (e.g. CCD), and then are rendered by 
several image processing steps inside the camera such as de-
mosaicing, non-linear tone mapping, and lossy compression 
(typically JPEG). Some denoising schemes were developed for 
operating inside the camera and before compression. For example, 
Faraji [9] targeted CCD noise removal, assuming the knowledge of 
the sensor noise statistics and the tone-mapping curve, but 
neglected the effects of other parts of the imaging pipeline. 

In this paper, we target a more difficult problem of “blind” 
denoising of the rendered photo images that were captured and 
compressed by cameras with unknown sensor parameters and 
imaging pipeline. This scenario occurs frequently in practice for 
the photo printing applications, where a variety of photos from 
different unknown sources are printed. In such a scenario, not only 
are the parameters of the noise model unknown, but also the noise 
model is untraceable, due to the spatial, chromatic and signal 
dependent mixing effects of demosaicing, color correction and 

JPEG compression [1]. In particular, we identify three common 
characteristics of noise in rendered photo images: Low-frequency 
(spatially correlated) noise, spatially-varying noise level due to the 
signal dependency and high levels of chrominance noise with 
considerably lower SNR than the luminance channel.  

This paper proposes a generic denoising scheme that addresses 
the noise in the rendered realistic digital photos without relying on 
an explicit noise model but rather on the above common empirical 
noise characteristics. Section 2 details our proposed approach, 
while Section 3 contains results and discussion. 

2. OUR DENOSING SCHEME 
We describe the three challenging characteristics of noise in real 

digital photos that deviate significantly from the commonly used 
AWGN model. First, noise in many digital photographs have 
significant Low Frequency (LF) component and large spatial 
correlations whereas AWGN model assumes no spatial correlation 
in the image noise. Noise with significant LF component is 
difficult to remove, since it is difficult to separate the noise from 
the smooth signal features. Simply enlarging the support (kernel 
size) of the filter (large enough to cover such LF component of the 
noise) over-smoothes the image details significantly. Second, the 
noise standard deviation (STD) is not uniform across the image. 
The consequences of simplistically assuming uniform STD are 
under-cleaning of the noise in highly noisy areas and over-
smoothing of the image features in areas with low noise. Thus, a 
more sophisticated model is needed to apply appropriate amount of 
filtering to all areas in the image. Third, the chrominance channels 
typically have considerably lower signal quality than the 
luminance channel. Since the chrominance channels are computed 
as approximate differences between the RGB color channels with 
correlated derivatives, they have much lower SNR than the 
luminance channel [1]. The SNR of the chrominance becomes 
even worse relative to the SNR of the luminance after JPEG 
compression due to subsampling and heavy quantization for the 
chrominance channels in typical settings. Denoising the 
chrominance channels becomes challenging, since the ability of 
denoising algorithms to separate noise from features is severely 
degraded when the SNR is very low, i.e. when the noise level 
increases to or above the typical edge-contrast levels. 

We have developed a denoising scheme that addresses the three 
characteristics of noise (i.e., the spatially-correlated noise, 
spatially-varying noise level and very high chrominance noise). 
The scheme combines three parts, each dedicated to address each 
characteristic mentioned above. The principles of each part may be 
implemented with a variety of denoisers, but we choose to 
demonstrate our approaches with the simple but effective bilateral 
filter introduced by Tomasi and Manduchi [2], which is designed 
for selective denoising without blurring the edges. 
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2.1. A Multi-Resolution Scheme for Correlated Noise 
We introduce a novel low-frequency (Gaussian-pyramid)-based 

Multi-Resolution (MR) framework designed for removing the 
spatially-correlated (low-frequency) noise and artifacts. In this 
framework, we first construct a Gaussian Pyramid with N+1 levels 
via a series of a simple smoothing low-pass filter followed by a 
subsampler. The pyramid construction can be summarized as 

 kk ISmoothSubsampleI 1  (k=0,…,N-1)           (1) 

,where Ik is the kth level image. Note that I0 is the original input 
image and the top Nth level image (IN) is obtained by smoothing 
and downsampling the I0 image N times.  We then apply denoising 
to the Nth level image (IN) and propagate the correction term (i.e. 
Denoise(IN) – IN) to the next lower level image (IN-1) such that the 
low frequency (LF) noise in IN-1 is removed prior to applying the 
denoiser in the N-1th level. The propagation is performed by 
applying an Upsample operation on the correction term followed 
by a simple addition. Note that after the propagation step, IN-1 
contains mostly high frequency (HF) noise with respect to the 
spatial resolution at that level. The denoising and propagation is 
repeated for each level (k=N-1 to 0) until the denoiser is applied to 
the original level. This is summarized as 

1
*

1
*

kkkk IIUpsampleIDenoiseI  (k = N-1,…,0),  (2) 

,where Ik
* is the denoised image at kth level and the final denoised 

output image is I0
*. Figure 1 illustrates the pyramid construction 

and propagation steps for level k. Note that the series of denoising 
and propagation steps allow the denoiser at each level to perform 
well since it is not required to deal with the LF noise. Before the 
actual denoising is applied to each level, any LF component of the 
noise at the level is removed by propagating the noise correction 
terms from the upper (lower resolution) levels.  

It is worthwhile to point out that generic terminologies such as 
“Smooth”, “Downsample”, “Upsample” and “Denoise” have been 
used in the paragraph above. This is because our MR framework is 
general and robust (insensitive) enough to the variations in its 
building blocks. For example, any denoising method may be 
plugged into the denoise operation in Equation (2) such that prior 
works on noise filtering may be leveraged (the input image at each 
level is a natural image). Furthermore, the framework allows 
different noise filtering algorithms to be applied at each level and 
the frequency content of the residual noise at the final output 
image can be shaped by changing the aggressiveness of the 
denoiser at each level. In addition, even the simplest upscalers (for 
the “Upsample” operation) such as pixel replication or bilinear 
interpolation yield good results as long as the denoiser at each 
level performs well. Thus, the overhead in multi-resolution-related 
computations is small. In fact, the MR framework enables us to use 
smaller filter support at each level and reduce the overall 
computational complexity.  

*
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*
1kI
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Figure 1: The block diagram of our multi-resolution framework 

Our MR approach has some similarities with the conventional 
MR approaches (See [4][5] and refs therein). Both approaches 
implement MR concept by constructing a pyramid and applying 
the processing to the pyramid levels. In fact, the “Smooth” and 
“Downsample” steps in our approach correspond to the generation 
of the low frequency bands during the (wavelet/subband) 
“decomposition” stage in conventional MR approaches. The 
“Upsample” (and hence propagation) step in our MR approach 
corresponds to the “reconstruction” step in the conventional 
approach. Thus, the theory on various wavelets (e.g. Haar, 
Daubechies’, Meyer’s, sinc, spline) in the conventional MR 
analysis can be applied to our MR approach as well. For example, 
simple block averaging for the “Smooth” operation and pixel 
replication for the “Upsample” operation is equivalent to using 
Haar wavelets for subband decomposition and reconstruction.  

We also point out the notable differences between our MR 
approach and the conventional MR approaches. Our approach 
constructs a Gaussian pyramid where all the images in the pyramid 
levels are natural images. Denoising is applied on these low-
frequency bands between the propagations. On the other hand, 
conventional MR approaches typically construct a Laplacian 
pyramid and modify mid/high frequency bands (e.g. by shrinkage 
of coefficients), where the low-pass band is typically untouched. 
Note that shrinking small coefficients in the high frequency bands 
does not fully exploit the spatial correlations with the neighboring 
pixels. Also, while inter-scale dependencies in our approach are 
intuitive and easy to model, it is difficult for conventional MR 
approaches to accurately model the wavelet coefficients and their 
inter-scale dependencies for various pixels and images, especially 
when signal-dependent and spatially correlated noise are present.  

In a related work, Aiazzi [6] introduced a generalization of the 
Laplacian pyramid that can handle a certain class of signal 
dependent noise. Yet, their approach is not suitable for spatially-
correlated noise, since the input to the denoisers at each level may 
still contain significant LF noise. Furthermore, the filtered items 
are the mid/high frequency subbands (statistically different than 
natural images), making it difficult to leverage the prior works on 
denoising algorithms or statistical models of natural images.  

2.2. Intensity-dependent Filtering for Non-uniform STD 
Intensity-dependent noise filtering method was developed to 

cope with non-uniform spatially-varying noise level. Traditionally, 
denoising algorithms were developed under the assumption of 
uniform noise level across the image. Such algorithms are sub-
optimal for photos captured by image sensors such as CCDs, since 
the noise STD is signal dependent. In particular, some parts of the 
image may be over-smoothed whereas other parts may be left with 
significant residual noise. Several prior works [6,9,10] address 
filtering of the signal dependent noise STD where the it is 
proportional to the signal raised to some fixed power or follows a 
piecewise power-law model. However, these methods are not 
general enough to handle the images from arbitrary sources of 
cameras with unknown imager and rendering pipelines. Also, some 
of these methods require the knowledge of the tone-correction and 
its inverse, which are not always available or easy to estimate.  

We propose a more general “blind” approach for filtering the 
noise with spatially varying (intensity-dependent) standard 
deviation (STD). Our approach relies on estimating the noise STD 
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as a function of the pixel intensity (i.e.  = f(I,p), where I is the 
local pixel intensity and p is the noise parameters) directly from 
the given rendered image [8]. Note that if this function is available 
from a model or off-line measurements then this step can be 
skipped. In our implementations, a simple quadratic model (i.e.  
= p0+p1I+p2I

2) is used for the noise variance since it is effective 
for typical rendered images [1]. To estimate p that model the 
intensity dependence, we bucket the image pixels into S intensity 
bins (e.g., 1~51, 52~102, 103~153, 154~204 and 205~255 for 
S=5). For each bin, a single noise STD is estimated for the pixels 
in the bin using the method detailed in [8]. We assume that the 
noise STD varies slowly with intensity and that the pixels in each 
bin have similar noise STD values. p is estimated by fitting the 
parametric model to the S pairs of noise STD values and the 
average pixel intensities for each bin. Note that a more 
sophisticated scheme of modeling the intensity dependence of 
noise STD may be chosen at the expense of higher computational 
complexity. Once p is estimated, noise STD values for all the 
pixels are readily obtained given the local pixel intensity.  

We demonstrate our approach with the simple but effective 
bilateral filter [2]. Its key idea is to modify the weights of a 
convolution mask in an image dependent manner, based on 
intensity differences between the pixel under consideration and its 
neighbors. The signal I(i) is filtered with the following formula 

)()()()(
)()()(

1)(* jhiIjiIgjiI
jhjiIiIg

iI j
j    (3) 

,where h(j) is the convolution kernel, I*(i) is the denoised output at 
pixel location i and g(I(i) - I(i-j)) is the photometric distance term 
used for selectively denoising the pixels without blurring the 
edges. Essentially, g( ) is the function that determines whether the 
differences between the neighboring pixels are due to the actual 
image contents (e.g. edges) or noise. In the conventional bilateral 
filter [2], g( ) does not depend on the pixel intensity and is often a 
fixed function. An example of g( ) is a Gaussian function with a 
fixed cut-off T where  
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In our approach, we let T vary and tie it with the estimated noise 
STD function such that the filter can perform denoising “evenly” 
on both the high and the low noise areas. Our new spatially-
varying photometric function g1( ) is  

2

2

1 ),(
exp),,(

pIf
I

kpIIg              (5) 

,where k is an optional constant which lets users choose the 
aggressiveness of the noise filter. 

2.3. Luminance-guided Filtering for Chrominance 
Channels with Very Low SNR 

A chrominance filtering method with luminance-guidance was 
developed to remove high levels of chrominance noise effectively. 
Due to the very low SNR in the chrominance channels, it is very 
difficult to remove the noise effectively and more sophisticated 
techniques are needed. Our approach is to filter the reliable 
luminance first and then use it to guide the process of filtering the 
chrominance. Note that the luminance signal is significantly less 
noisy and even sharper than the chrominance signal. The presence 

of the image details in the luminance channel is first detected, 
which guides how filtering is applied to the co-located pixels in the 
chrominance channels. A similar idea was presented earlier by 
Netraveli [11] for denoising TV signals. In our approach, we 
modified the conventional bilateral filter [2] such that the filtered 
luminance signal is also used for computing the taps of the 
chrominance filter. The luminance-guidance term allows us to 
apply more aggressive filtering without over-smoothing the details 
because the noise and the signal can be better separated with the 
additional information from the luminance channels. A specific 
implementation form for the luminance-guided filtering is shown 
in Equation (6) for the example of denoising the chrominance cb(i)  
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   (6) 
,where y*(i) and cb*(i) are the denoised luminance and 
chrominance values at pixel location i and  is the weighting 
between the luminance guidance term and the self-guidance term. 
The equation can be obtained by replacing the generic photometric 
distance function g( I(i) - I(i-j) ) in Equation (3) with a luminance-
guided photometric distance function g2( cb(i)-cb(i-j) , y*(i)-y*(i-j) 
, ). In particular, when a Gaussian function is chosen for the 
photometric distance function, we obtain  
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T

ycb
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.           (7) 
Note that the photometric distance function can be made strictly 
luminance-guided (i.e., without any self-guidance term cb2) but 
occasionally produce undesired artifacts as the chrominance 
variations can occur with little or no luminance variations. 
Furthermore, we can let T2 vary with the pixel intensities as we 
described in Section 2.2. The photometric distance function with 
both the luminance-guidance and the intensity dependence term is 

2*

2*2
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*yCb ppyf

ycb
kyycbg .  (8) 

Note that the function f( ) is a function of the luminance intensities 
instead of the chrominance intensities. As the noise STD varies 
with the amount of photons captured at each pixel in the image 
sensor, the chrominance STD is better modeled as a function of the 
luminance intensities than the chrominance intensities. 

2.4. A Filter Combining All Three Methods 
In the final implementation, the three new approaches discussed in 
previous sections are implemented with the bilateral filter as a 
baseline. Prior to performing the denoising, we first transform the 
RGB image into the YCbCr space and apply the noise estimator 
[8] to estimate the noise STD profile directly from the image. 
Three separate image pyramids are generated for Y, Cb and Cr 
channels and the methods described in Section 2.2 and 2.3 are 
applied in the Multi-resolution (MR) fashion (as described in 
Section 2.1). “Denoise” in Figure 1 is implemented by Equations 
(3) and (5) for the luminance (Y) channel and (6) and (8) for the 
chrominance (Cb and Cr) channels. Less than three levels of 
pyramid (N+1<3) are used for the luminance channel while less 
than five levels of pyramid (N+1<5) are used for the chrominance 
channels, since the noise in the chrominance channels have higher 
spatial correlations especially when JPEG compression is applied.  
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3. EXPERIMENTAL RESULTS  
The objective of our work is to remove the noise in realistic 

digital photographs rendered by real digital cameras. In order to 
evaluate the denoising methods for such scenarios, the test images 
were obtained by accurately simulating the process of degradation 
in digital cameras. Each “noise-free” image was carefully 
generated by capturing 160 raw frames of the same scene and 
averaging those frames to virtually eliminate the noise. Noise was 
then added to the raw “noise-free” images by using a realistic 
model of solid-state image sensors [1]. The raw noisy images were 
then rendered by the generic pipeline of a digital camera. The 
rendering pipeline includes steps such as demosaicing, color 
correction, gamma correction, smoothing and sharpening. 
Optionally, the rendered images were compressed with the JPEG 
standard. Finally, several denoising methods were applied to these 
rendered noisy images. For quantitative comparisons, we also 
rendered the raw “noise-free” images by passing them through the 
same imaging pipeline. The rendered “noise-free” images served 
as the reference images (i.e., the ground truth) when evaluating the 
performances of the denoising methods. The performances were 
measured by computing the mean-squared-error (and hence the 
PSNR) between the denoised images and the rendered “noise-free” 
images which served as the ground truths.  

We chose to compare our method with three nonlinear 
denoising methods (bilateral filter [2], BLS-GSM by Portilla et al. 
[12] and the anisotropic diffusion by Perona and Malik [13]) that 
have demonstrated good denoising results and have their code 
available publicly. Each method has a parameter (T, sigma and 
kappa respectively) that relate to the noise level of the input image 
and primarily control the aggressiveness of the denoising relative 
to preservation of the image features. Since these methods do not 
provide means to choose the parameters optimally without the 
prior knowledge of the noise power, we applied many sets of these 
parameters for fair comparisons. For all other parameters, default 
values and configurations provided by the authors were chosen 
(e.g., 5 by 5 Gaussian kernel for bilateral filter and 6 iterations for 
Anisotropic diffusion). See [2][12][13] for details. Since our 
method estimates the noise profile directly from the images, it was 
not necessary to apply multiple sets of parameters for our method. 
Table I summarizes the improvement in PSNR (relative to that of 
the input image with no denoising) of various methods with select 
parameters (T, sigma or kappa) denoted by the numbers in the 
parenthesis. Note that the images 1 and 2 are uncompressed while 
the images 3 and 4 are compressed versions of images 1 and 2 
(JPEG compression with Q=75). It can be seen that our method 
gives the highest PSNR improvement. Note the gap between the 
conventional bilateral filter and our method which uses bilateral 
filter as a base method. 

We also show qualitative results since PSNR cannot fully 
capture human visual preferences. Figure 2 shows cropped 
versions of the noisy input image 2 and the results from various 
denoising methods. Note that the input image has strong low-
frequency chrominance noise (visible as large and colorful grains 
when zoomed-in) which has vastly different characteristics from 
AWGN and is more challenging to remove. Our method was able 
to remove high levels of spatially-correlated noise while the details 
are maintained. Other methods, however, failed to remove the 
spatially-correlated noise or blur the image excessively.   

Input image Image1 Image2 Image3 Image4 
Bilat (60) 1.77 3.81 2.13 2.45 
Bilat (120) 3.13 4.40 2.55 2.53 
AnisoDiff (60) 1.97 5.05 2.95 3.10 
AnisoDiff (120) 4.76 5.41 3.36 3.05 
BLS_GSM (60) 4.30 6.56 3.80 3.58 
BLS_GSM (120) 7.38 4.78 5.08 1.73 
Our MR method 7.59 7.36 5.10 4.51 

Table I: PSNR improvement in dB for various denoising methods 

 
             (a)                                               (b) 

 
(c)                                               (d) 

Figure 2: Denoising results for (a) input image, (b) our method, (c) 
anisotropic diffusion (kappa=120), (d) BLS_GSM (sig=20)  
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