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ABSTRACT

We propose a new image restoration algorithm that is

driven by an adaptive piecewise autoregressive model (PAR).

The strength of the new algorithm is its ability to preserve

spatial structures better than its predecessors. The high adapt-

ability is achieved by locally fitting 2D image waveform to

the PAR model in moving windows. The problem is posed

as one of nonlinear least-square estimation of both PAR pa-

rameters and original pixels, constrained by the degradation

function. Robust solutions of the underlying underdetermined

inverse problem are obtained by an innovative use of multiple

PAR models that circumvent the issue of model overfitting,

and by applying a structured total least-square technique.

Index Terms— Image restoration, autoregressive pro-

cess, structured total least squares.

1. INTRODUCTION

Restoring or estimating an image from a degraded form is in-

herently an ill-posed inverse problem. The performance of

an image restoration algorithm largely depends on how well

it can employ regularization conditions or constraints when

numerically solving the problem. The solution can be greatly

improved if a good adaptive image model can be integrated

into the estimation process, because the model can regulate

estimated pixels according to useful prior statistical knowl-

edge. Since most natural images have varying second-order

statistics, an image model for restoration has to be adaptive.

The model class of piecewise two-dimensional autoregressive

process is capable of being fit to image signals of varying co-

variance matrix. Let x(i, j) be an image, the piecewise au-

toregressive model (PAR) is defined by

x(i, j) =
∑

(i,j)∈W

∑
u,v

au,vx(i− u, j − v) + ei,j (1)

where W is a local window, and au,v’s are the parameters of

the PAR model. The term ei,j is a random perturbation due to

both fine scale chaotic details and measurement noises.

The power of the PAR model class comes from the flex-

ibility of adjusting the model parameters au,v to local pixel

structures. The fact that any semantically meaningful image

constructs, such as edges and surface textures, are formed by

spatially coherent contiguous pixels, suggests piecewise sta-

tistical stationarity of the image signal. In other words, in the

class of the PAR models, the parameters au,v remain (nearly)

constant in a small locality, although they may and often do

vary significantly in different image segments. This property

of natural images makes it possible to estimate the PAR model

parameters using sample statistics in a moving window.

Model-based image restoration was also studied by Acton

and Bovik [1]. They used two classes of image models, one

is called piecewise linear and the other locally monotonic, to

regulate restored pixel values. However, these models are not

as versatile as the 2D piecewise autoregressive model. The

validity of the PAR model class with locally adaptive parame-

ters is corroborated by the success of this modeling technique

in lossless image compression. Among all known lossless

image coding methods, including CALIC, TMW [2], invert-

ible DWT and DCT, those driven by the PAR model achieved

the lowest lossless bit rates [3, 4]. In the principle of Kol-

mogorov complexity, the true model of a stochastic process is

the one that yields the minimum description length. Thus we

have strong empirical evidence to support the appropriateness

and usefulness of the PAR model for natural images. Another

advantage of the PAR model class is computational. The esti-

mation of the model parameters and the restoration of the de-

graded pixels can be posed as a unified problem of non-linear

least-squares, and solved by the total least-squares technique.

Such a continuous optimization approach is more amenable

and efficient than a combinatorial optimization approach that

has to examine through a very large class of models [1].

The rest of the paper is structured as follows. Sec. 2 poses

the problem of non-linear estimation for adaptive restoration

(NEAR), which can be formulated as one of model-based

block estimation. The selection of the image models is dis-

cussed. The risk of model overfit is assessed and a remedy

is proposed. Sec. 3 develops a structured total least squares

(STLS) solution for the NEAR problem. Experimental results

are reported and compared with those of some popular image

restoration methods in Sec. 4.

2. MODEL-BASED NONLINEAR ESTIMATION

Let x be the original image and y be a degraded form of x,

y(i, j) =
∑
m,n

h(m, n)x(i−m, j − n) + ε, (2)
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where h(m, n) is the degradation function and ε is an additive

environment noise. First, we state an easily provable relation

between x and y, assuming x is piecewise autoregressive.

Proposition 1. If an image is a 2D autoregressive (AR) pro-
cess and it has gone through a degradation h, then the de-
graded image is a 2D autoregressive moving average (ARMA)
process. Its AR part has the same parameters as those of the
original image, and its MA part is determined by h.

Although x and y have the same AR parameters, one can-

not directly estimate the PAR model parameters au,v’s from

the observed image y using conventional linear least-squares

method, because y has the signal-dependent MA part. But

estimating au,v’s from x poses a problem of chicken and egg,

because our original problem is to estimate x using au,v’s.

To resolve this dilemma, we propose a new image restoration

technique that jointly estimates the parameters of the PAR

model and the pixels of the original image. We cast the joint

estimation task as a constrained nonlinear least-squares prob-

lem having au,v’s and x both as variables. Our task of non-

linear estimation for adaptive restoration (NEAR) is to solve

the following constrained optimization problem:

min
x,a

∑
(i,j)∈W

(
x(i, j)−

∑
u,v

au,vx(i− u, j − v)

)2

subject to ‖x ∗ h− y‖ = σ,

(3)

where σ is variance of the noise. Here we assume that in lo-

cal window W the original image x is a stationary 2D autore-

gressive process. This assumption is valid because common

image constructs, such as edges and surface textures, tend to

have consistent second order statistics in a locality.

However, one should exercise caution when applying (3),

and be aware of the risk of data overfitting, or curse of dimen-

sionality. If a PAR model of order t (the length of parameter

vector a in (3)) is used, then the number of variables in (3)

is |W | + t (|W | is the size of window W ). But the number

of equations between these variables is only 2|W |, because

the regularization term x ∗ h = y generates |W | equality

constraints. Ideally, we want to make the order t of the PAR

model high enough to fit x well and at the same time make the

window size |W | small enough such that x remains station-

ary in W . These two criteria may not be met simultaneously

without risking data overfitting, because |W |+t gets too close

to 2|W | for large t and small |W |.
On a second reflection, fortunately, the two dimensions

of the image signal offer ways to circumvent the problem of

data overfitting. One way to increase the number of equations

or constraints on pixels x ∈ W is the use of multiple PAR

models that associate pixels in different directions. Among

many possibilities, we introduce two PAR models of order 4,

called the diagonal model AR× and the axial model AR+,

which act on two disjoint neighborhoods of x(i, j):

s+(i, j) = (x(i, j − 1), x(i− 1, j);x(i, j + 1), x(i + 1, j))T

s×(i, j) = (x(i− 1, j − 1), x(i− 1, j + 1),

x(i + 1, j + 1), x(i + 1, j − 1))T

(4)

Vectors s×(i, j) and s+(i, j) consist of four 8-connected

neighbors and four 4-connected neighbors of x(i, j) in the

HR image, respectively, explaining our terminology of diag-

onal and axial models. Incorporating these two PAR models

into the original nonlinear estimation framework, we modify

the objective function (3) to the following:

min
x,χ,τ,ŵ,ẇ

{ ∑
(i,j)∈W

ŵ(x(i, j)− χT s×(i, j))2+

∑
(i,j)∈W

ẇ(x(i, j)− τT s+(i, j))2
}

subject to ‖x ∗ h− y‖ = σ

(5)

where χ = (χ1, χ2, χ3, χ4) and τ = (τ1, τ2, τ3, τ4) are pa-

rameters of the two PAR models AR× and AR+, and ŵ and

ẇ are optimal weights of the two models. From (3) to (5) the

number of equations is increased by |W |, whereas the num-

ber of unknown variables increases only by 2. Although we

adopt two PAR modelsAR× andAR+ of order 4 only for the

sake of preventing model overfit, the block estimation process

of NEAR has the net effect of an adaptive non-separable two

dimensional inverse filter that has as many as |W | taps.

3. STRUCTURED TOTAL LEAST-SQUARES
SOLUTION

This section presents an algorithm for NEAR. We make (5)

an unconstrained nonlinear least square problem:

min
x,χ,τ,ŵ,ẇ

{ ∑
(i,j)∈W

ŵ(x(i, j)− χT s×(i, j))2+

∑
(i,j)∈W

ẇ(x(i, j)− τT s+(i, j))2 + λ||y − x ∗ h||2
} (6)

The Lagrangian multiplier λ is adjusted such as the solution

x satisfies ‖x ∗ h − y‖ = σ. For convenient representation

we rewrite (6) in matrix form:

min
x,χ,τ,ŵ,ẇ

{
ŵ‖x−C1x‖2 + ẇ‖x−C2x‖2 + λ‖y−C3x‖2

}
(7)

where C1 and C2 are |W | × |W | matrices. Matrix C3 corre-

sponds to the convolution operation of h.

Define the residue vector r(x, χ, τ), ŵ, ẇ as

r(x, χ, τ, ŵ, ẇ) =

⎡
⎣r1(x, χ, ŵ)

r2(x, τ, ẇ)
r3(x)

⎤
⎦ (8)
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where

r1(x, χ, ŵ) =
√

ŵ(I−C1) ∗ x

r2(x, τ, ẇ) =
√

ẇ(I−C2) ∗ x

r3(x) =
√

λ(y −C3 ∗ x)

(9)

and present (7) in the following quadratic form:

min
x,χ,τ,ŵ,ẇ

r(x, χ, τ, ŵ, ẇ)T r(x, χ, τ, ŵ, ẇ) (10)

The nonlinear least square problem (10) can be solved by

an iterative algorithm of structured total least squares (STLS)

[5]. First, we linearize the residue vector r(x, χ, τ, ŵ, ẇ). Let

Δx, Δχ, Δτ, Δŵ, and Δẇ represent small changes in x, χ,

τ, ŵ, and ẇ respectively, the residue vector r(x, χ, τ, ŵ, ẇ)
can be linearized as following:

r(x + Δx, χ + Δχ, τ + Δτ, ŵ + Δŵ, ẇ + Δẇ)

=

⎡
⎣r1(x + Δx, χ + Δχ, ŵ + Δŵ)

r2(x + Δx, τ + Δτ, ẇ + Δẇ)
r3(x + Δx)

⎤
⎦

=

⎡
⎣r1(x, χ, ŵ) + ∂r1

∂x Δx + ∂r1
∂χ Δχ + ∂r1

∂ŵ Δŵ

r2(x, τ, ẇ) + ∂r2
∂x Δx + ∂r2

∂τ Δτ + ∂r2
∂ẇ Δẇ

r3(x) + ∂r3
∂x Δx

⎤
⎦

(11)

Therefore, given the current estimates of the HR pixels x, the

model parameters χ, τ, and the weights ŵ, ẇ, (10) reduces to

min
Δx,Δχ,Δτ,Δŵ,Δẇ

∥∥∥∥∥∥∥∥∥∥

⎡
⎣

∂r1
∂x

∂r1
∂χ 0 ∂r1

∂ŵ 0
∂r2
∂x 0 ∂r2

∂τ 0 ∂r2
∂ẇ

∂r3
∂x 0 0 0 0

⎤
⎦

⎡
⎢⎢⎢⎢⎣

Δx
Δχ
Δτ
Δŵ
Δẇ

⎤
⎥⎥⎥⎥⎦

+

⎡
⎣−r1(x, χ, ŵ)
−r2(x, τ, ẇ)
−r3(x)

⎤
⎦

∥∥∥∥∥∥
2

(12)

The resulting Δx, Δχ, Δτ, Δŵ and Δẇ are the updates of

the estimates of x, the model parameters χ, τ, and the weights

ŵ, ẇ for the next iteration. In each iteration the least-squares

problem (12) is linear with Δx, Δχ, Δτ, Δŵ and Δẇ being

variables, and hence it can be solved efficiently.

The remaining problem is the initialization of the STLS

algorithm. By Proposition 1, the PAR model parameters can

be initialized from y:

χ(0) = arg min
χ

{ ∑
(i,j)∈W

(
y(i, j)− χT s×(i, j))2

}

τ(0) = arg min
τ

{ ∑
(i,j)∈W

(
y(i, j)− τT s+(i, j))2

} , (13)

where s×(i, j) and s+(i, j) are 8-connected and 4-connected

neighborhood, respectively. The weights ŵ and ẇ are initial-

ized as

ŵ(0) =
e+

e+ + e×
; ẇ(0) =

e×
e+ + e×

(14)

where e× and e+ are the squared errors associated with the

solutions of (13). These weights are optimal in least squares

sense if the fit errors of the two PAR models are indepen-

dent. With the initialized PAR model parameters and the two

weights, x can be initialized by

x(0) = arg min
x

∥∥∥∥∥∥
⎡
⎣ 0

0√
λy

⎤
⎦−

⎡
⎣−I + C1

−I + C2√
λC3

⎤
⎦x

∥∥∥∥∥∥
2

(15)

4. EXPERIMENTAL RESULTS AND REMARKS

In our experiments the input images were generated by pass-

ing test images through a degradation process plus small

Gaussian noise. The degraded images were restored by

NEAR and three well-known methods: Wiener deconvo-

lution, Regularized Least Square (RLS) algorithm and the

Lucy-Richardson algorithm. Two types of degradation were

tested: the point spread function (PSF) of a camera and linear

camera motion. Table 1 lists the PSNRs of the restored im-

ages by different methods when the degradation is caused by

a Gaussian PSF and Gaussian noise of σ2 = 4 × 10−4. For

all test images, NEAR achieves the highest PSNR.

Fig. 1 and Fig. 2 compare different methods in visual

quality. In Fig. 1, the input image is degraded (blurred) by

a linear motion of 5 pixels; Fig. 2 lists output images of dif-

ferent methods when the degradation function is a Gaussian

PSF. Although Lucy-Richardson and RLS algorithms can de-

blur the image, they introduce visually annoying noises in the

restored images. The proposed NEAR method restores the

details cleanly and in particular preserves the edge structures.

The superior visual quality of the NEAR method should be

evident by observing reconstructed flower pedals in Fig. 1,

cloth patterns (in image Barb) and feathers (in image Lena)

in Fig. 2.

The proposed NEAR method can be applied when the

degradation function or/and the noise level varies in the im-

age. We are extending NEAR to situations where the degra-

dation function is unknown.

Table 1. PSNR (dB) results of different methods.
Image Wiener RLS Lucy-Richardson NEAR

Lena 16.72 32.72 26.82 33.46

Leaves 18.03 30.62 27.45 32.15

Flower 18.72 31.40 26.98 32.37

Barb 16.87 25.90 25.51 28.28

Hat 16.41 30.09 26.75 31.34

Average 17.44 30.40 26.75 31.72
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Fig. 2. Comparison of different methods on images Barb and

Lena.

1188


