
DISTRIBUTED COMPRESSIVE VIDEO SENSING

Li-Wei Kang and Chun-Shien Lu
Institute of Information Science, Academia Sinica, Taipei 115, Taiwan, ROC

{lwkang, lcs}@iis.sinica.edu.tw

ABSTRACT
Low-complexity video encoding has been applicable to several
emerging applications. Recently, distributed video coding (DVC)
has been proposed to reduce encoding complexity to the order of
that for still image encoding. In addition, compressive sensing (CS)
has been applicable to directly capture compressed image data
efficiently. In this paper, by integrating the respective
characteristics of DVC and CS, a distributed compressive video
sensing (DCVS) framework is proposed to simultaneously capture
and compress video data, where almost all computation burdens
can be shifted to the decoder, resulting in a very low-complexity
encoder. At the decoder, compressed video can be efficiently
reconstructed using the modified GPSR (gradient projection for
sparse reconstruction) algorithm. With the assistance of the
proposed initialization and stopping criteria for GRSR, derived
from statistical dependencies among successive video frames, our
modified GPSR algorithm can terminate faster and reconstruct
better video quality. The performance of our DCVS method is
demonstrated via simulations to outperform three known CS
reconstruction algorithms.

Index Terms—compressive video sensing, (distributed)
compressive sampling/sensing, distributed video coding

1. INTRODUCTION

Low-complexity video coding has been potentially applicable for
several emerging applications, such as video conferencing with
mobile devices and wireless visual sensor networks (WVSN) [1].
Since the low-complexity restriction for a video device, efficient
video compression is challenging. Recently, distributed video
coding (DVC) [2] based on the principle of distributed source
coding (DSC) has been proposed to reduce video encoding
complexity to the order of that for still image encoding while
preserving a certain coding efficiency. In DVC, the major
encoding computation burden can be shifted to the decoder, which
is usually allowed to possess powerful computational capability in
several real applications (e.g., WVSN).

However, for still image encoding, it is required to capture
huge amounts of raw image data first, followed by performing
some transformation operator (e.g., discrete wavelet transform, i.e.,
DWT), which is also computation-intensive [3]. Recently, with the
advent of a single-pixel camera [4], compressive sensing (CS) [3]-
[8] has been applicable to directly capture compressed image data
efficiently. The compressed image can be reconstructed using
some CS reconstruction algorithms at the decoder. Similar to DVC,
the computation burden can be shifted to the decoder.

However, for compressing huge amounts of video data, it may
not be efficient enough to only reduce the encoding complexity or
only to individually apply CS to each frame without considering
similarities among successive frames. In this paper, by integrating
the respective characteristics of DVC and CS, a distributed
compressive video sensing (DCVS) framework is proposed to
simultaneously capture and compress video data. Almost all

computation burdens can be shifted to the decoder where our
modified GPSR (a kind of CS reconstruction algorithm)
incorporating with the statistical dependencies among successive
frames is exploited to reconstruct video data.

The characteristics of our DCVS includes: (i) very low-
complexity encoder: only general CS measurement process
(described in Sec. 2.3) will be individually applied to each frame;
and (ii) very efficient decoder: by applying the proposed
initialization and stopping criteria for GRSR (described in Sec. 4),
the convergence speed and reconstructed video quality using our
modified GPSR can be, respectively, faster and better than those
using the original GPSR [9], TwIST (two-step iterative shrinkage/
thresholding) [10], and OMP (orthogonal matching pursuit) [11].

2. RELATED WORKS

In this section, several related works, including DSC, DVC, CS,
compressive image/video sensing, and distributed CS will be
reviewed first. Then, the proposed DCVS based on DVC and CS
will be addressed in Sec. 3.
2.1. Distributed source coding (DSC)
Assume that W and S are two statistically dependent discrete
signals, which are encoded independently but decoded jointly.
Slepian-Wolf theorem [2] states the achievable rate region for
lossless coding is defined by RW H(W|S), RS H(S|W), and RW +
RS H(W, S), where RW and RS are the rates for encoding W and S,
respectively, H(W|S) and H(S|W) are the conditional entropies of W
and S, respectively, and H(W, S) is the joint entropy of W and S.
Then, Wyner-Ziv theorem [2] states DSC with side information (SI)
for lossy coding. Assume that S is known as the SI of W. The
conditional distortion function for W is unchanged no matter S is
available only at the decoder, or both at the encoder and decoder.
2.2. Distributed video coding (DVC)
In DVC [1]-[2], based on Wyner-Ziv theorem, the statistical
dependency between a frame W and its SI S is modeled as a virtual
correlation channel, where S can be viewed as a noisy version of W.
The correlation between W and S can be modeled as a Laplacian
distribution as follows:

        baSbaWebaSbaWP ,,

2
,,   , (1)

where W(a, b) and S(a, b) are the (a, b)-th pixel in W and S,
respectively, and 0 is the model parameter, where  2 ,
and is the standard deviation of (W(a, b) - S(a, b)). At the
encoder, without performing motion estimation, the compression
of W can be achieved by transmitting only part of the parity bits
(Wyner-Ziv bits) derived from the channel-encoded version of W
according to the request from the decoder via the feedback channel.
The decoder uses the received Wyner-Ziv bits and the SI S derived
from previous decoded frames to perform channel decoding to
correct some “errors” in S for the reconstruction of W. In
transform-domain DVC, the Wyner-Ziv bits are generated by
performing some transformation operator, followed by performing

1169978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

scalar quantization and channel encoding. Hence, the complexity
of the DVC encoder is similar to that of still image encoder
consisting of transformation, quantization, and entropy encoding.
2.3. Compressive sensing (CS)
Assume that a sparse basis matrix with size N×N can provide a
K sparse representation for a real value signal x with length N.
That is, x can be represented as x = and with length N can be
well approximated using only K << N non-zero entries. CS [3]-[8]
states that x can be accurately reconstructed by taking only:

M = O(Klog(N/K)), (2)
where K < M << N, linear and non-adaptive measurements from:

y = x = = A , (3)
where y is an M×1 vector, is an M×N measurement matrix that is
incoherent with , and A = . More specifically, the M
measurements in y are random linear combinations of the entries of
, which can be viewed as the compressed and encrypted version

of x. Currently, it is unclear that how to efficiently quantize and
entropy-encoded the M measurements [5], which will be left for
the future research. To reconstruct from y, CS is based on
solving the convex optimization problem [3]-[10] (e.g., linear
programming or GPSR [9]) or some iterative greedy algorithms
(e.g., OMP [11]). Finally, x can be reconstructed via ~~ x ,
where ~ is the reconstructed .
2.4. Compressive image/video sensing
In compressive image sensing, if an image x can be sparsely
represented using a basis (e.g., DWT), x can be compressed via
the CS technique in Eq. (3) and reconstructed via some CS
recovery algorithms [3]-[11]. On the other hand, compressive
video sensing has been first proposed in [8], where each video
block, at the encoder, is classified to be either sparse or non-sparse
via a CS test. Each sparse block is compressed via CS, whereas
each non-sparse block is fully sampled.
2.5. Distributed compressive sensing (DCS)
Distributed compressive sensing (DCS) [6] exploits both intra-
signal and inter-signal correlation structures. Consider a sensor
network scenario, several sensors measure signals that are each
individually sparse in a certain basis and also correlated among
sensors. In DCS, each signal is independently measured via a CS
technique and jointly reconstructed at a collection point collecting
measurements from multiple sensors.

3. DISTRIBUTED COMPRESSIVE VIDEO SENSING (DCVS)
In this section, the joint sparsity model of our DCVS is first
described in Sec. 3.1 to show the guideline for exploiting the
statistical dependencies among successive frames. In our DCVS
encoder described in Sec. 3.2, each frame is independently
compressed via a CS measurement process. In our DCVS decoder,
each frame is jointly reconstructed using our modified GPSR
incorporating the proposed initialization derived from DVC side
information generation and the proposed stopping criteria derived
from statistical dependencies among successive frames, described
in Secs. 3.3-3.6. Note that our DCVS, at its current status, is only
designed for single-view videos, which can be extended to
multiview video scenario, and can be applicable in a WVSN.
3.1. Joint sparsity model
To exploit the correlation among successive frames, similar to [6],
the joint sparsity model in our DCVS can be described as follows.
Assume two successive frames, xt and xt+1, in the same scene are
visually similar, where t is the time instant. That is, xt and xt+1
should have similar common portion and respective unique
portions. Conceptually, the two frames can be expressed as:

xt = xC + xt_U, (4)
xt+1 = xC + xt+1_U, (5)

where xC is the similar/common portion between xt and xt+1, xt_U
and xt+1_U are the unique portions of xt and xt+1, respectively. By
treating xt as a reference frame for xt+1, in conventional video
coding, the encoder will perform motion estimation to find the
predictor (similar to xC) for xt+1 and encode the difference (similar
to xt+1_U) between xt+1 and its predictor. Hence, the compression of
xt and xt+1 can be achieved by compressing xt and xt+1_U. Assume a
sparse basis matrix can provide Kt and Kt+1_U sparse
representations for xt and xt+1_U, respectively, as:

xt = t, || t||0 = Kt, (6)
xt+1_U = t+1_U, || t+1_U||0 = Kt+1_U, (7)

where t and t+1_U are the sparse representations of xt and xt+1_U,
respectively, and || ||0 is the number of nonzero entries in , i.e., 0
norm of . Usually, Kt Kt+1_U, and based on Eq. (2), Mt Mt+1_U,
where Mt and Mt+1_U are the number of measurements of xt and
xt+1_U, respectively. Although, in DCVS, it is impossible to find
xt+1_U at the encoder due to low-complexity restriction, it can be
confirmed that the number of measurements (Mt+1) of xt+1 can be
smaller than that (Mt) of xt if the correlation between them can be
adequately exploited by treating xt as a reference frame for xt+1.
3.2. DCVS encoder
In DCVS, a video sequence consists of several GOPs (group of
pictures), where a GOP consists of a key frame followed by some
non-key frames. Conceptually, each key frame serves as a
reference frame for its neighboring non-key frames. At our DCVS
encoder shown in Fig. 1, without performing motion estimation,
without needing any prior knowledge about correlation among
successive frames, and without performing extra tasks (no
additional burden) in the CS process described in Sec. 2.3, each
frame xt (key frame or non-key frame) with size N is compressed
via the CS measurement process (Eq. (3)) as:

 yt = xt, (8)
where yt is the measurement vector with size Mt×1 and is the
Mt×N measurement matrix described later. Based on the joint
sparsity model in Sec. 3.1, the measurement rate (MR) of a key
frame should be larger than that of a non-key frame. The MR for a
frame Xt can be defined as MRt = Mt/N.

CS measurement
yt = Фxt

Each frame xt
Measurement vector
(compressed frame) yt

Fig. 1. Our DCVS encoder.
Here, the exploited measurement matrix is the scrambled

block Hadamard ensemble (SBHE) matrix [7], which takes the
partial block Hadamard transform, followed by randomly
permuting its columns. SBHE has been shown to satisfy the five
requirements, including near optimal performance, university, fast
computation, memory efficient, and hardware friendly, and
outperform several existing ones (e.g., the Gaussian i.i.d matrix
and the binary sparse matrix) [7]. The sparse basis matrix used
in this paper is DWT basis.

After performing the CS process, the measurement vector yt for
each frame xt (the compressed version for xt) will be transmitted to
the decoder. At the decoder, each key frame is reconstructed via
the GPSR algorithm [9] while each non-key frame is reconstructed
via GPSR incorporating with the statistical dependencies among
successive frames, to be addressed in Secs. 3.3-3.6.
3.3. Gradient projection for sparse reconstruction (GPSR)
At the decoder, each key frame xt = t with size N is
reconstructed via GPSR [9], which solves the convex
unconstrained optimization problem as:

1170

,
2
1min

1

2

2 ttt Ay
t




 (9)

where yt is a Mt×1 vector, yt = xt, A = is a Mt×N matrix, ||v||2
is the Euclidean norm (2 norm) of v, ||v||1 is the 1 norm of v, i.e.,
the sum of the absolute value of each component in v, and is a
non-negative parameter. GPSR is essentially a gradient projection
(GP) algorithm applied to a quadratic programming formulation of
Eq. (9), in which the search path for each iteration is obtained by
projecting the negative-gradient direction onto the feasible set [9].

Each key frame is reconstructed via GPSR [9] with default
settings in the public GPSR code included in the “Fast CS using
SRM” tool [7]. In GPSR, the default initial solution for t is a zero
vector. The default stopping criterion of GPSR is that when the
relative change in the number of nonzero components in t is
smaller than a threshold TA (default TA = 0.01), the algorithm will
stop. Finally, the key frame xt can be reconstructed via

ttx ~~  ,
where

t
~ is the final solution obtained by GPSR. Note that the

used GPSR included in [7] is an older version. Recently, the latest
version called GPSR 5.0 [9] providing a novel default stopping
criterion has been released. However, our simulations show that
the older version can provide a better tradeoff between
reconstructed video quality and reconstruction complexity.
3.4. Side information (SI) generation
In DCVS, each non-key frame is reconstructed via GPSR with the
proposed initialization and stopping criteria, derived from the
statistical dependencies among successive frames. Before
reconstructing a non-key frame xt, the decoder will generate its SI
St first, which can be viewed as a noisy version of xt. Similar to
DVC [2], SI can be generated by motion-compensated
interpolation from previous reconstructed neighboring key frames.
In DCVS, a very efficient frame rate up-conversion tool [12] is
exploited to generate the SI for each non-key frame.
3.5. Initialization at DCVS decoder
In our modified GPSR for reconstructing each non-key frame xt =

t, the initial solution for t is set to by its SI St as follows:
  ,~ 0

Stt   i.e.,   ,~ 0
tt Sx  where  0~

t is the initial solution (at the 0-
th iteration) for t, St = St, and St is the SI of xt. In the same
scene, successive frames should have a certain similarity. Hence,
the SI derived from the neighboring key frames for a non-key
frame should be similar to this frame, even though the SI may be
coarse due to fast motions, poor SI generation, or poor neighboring
reconstructed key frames. Based on Sec. 3.1, the measurement rate
for a non-key frame is usually set to be smaller than that of a key
frame. To get a good reconstructed non-key frame, it is required to
have a good initialization, followed by GPSR optimization where
proper stopping criteria are required to get optimal or near-optimal
solution after a small number of iterations.
3.6. Stopping criteria at DCVS decoder
It is usually difficult to decide when GPSR can stop without
incurring excessive computation [9] and with sufficient
reconstruction quality. At DCVS decoder, the stopping criteria for
GPSR are designed based on the statistical correlation between the
current non-key frame and its SI. Consider a non-key frame xt, its
SI St, and the reconstructed xt at the i-th iteration, denoted by  i

tx~ .
Based on Sec. 2.2, the correlation between xt and St can be
modeled as a Laplacian distribution with the parameter (xt, St).
The more similar xt and St are, the larger (xt, St) is. Similarly,  i

tx~
and St can be modeled by ( i

tx~ , St) while  i
tx~ and xt can be

modeled by ( i
tx~ , xt). Obviously, if xt can be perfectly

reconstructed by  i
tx~ , ( i

tx~ , xt) = . Hence, if  i
tx~ can be found

to maximize ( i
tx~ , xt),  i

tx~ should be very similar to xt. Initially,
 

tt Sx 0~ and hence ( i
tx~ , St) = >> ( i

tx~ , xt) for i= 0. When i
increases, ( i

tx~ , St) will first decrease rapidly and then slowly
decrease while ( i

tx~ , xt) will slowly increase. If excess iterations
(i becomes larger) are performed, ( i

tx~ , xt) may decrease, i.e.,
 i
tx~ may begin to be distant from xt. However, at the decoder, xt is

unknown and only ( i
tx~ , St) can be known. Under this

circumstance, it is not guaranteed that when ( i
tx~ , St) decreases

and ( i
tx~ , xt) increases. Hence, the first stopping criterion can

be determined as follows. When the relative change in the
Laplacian parameter ( i

tx~ , St) is smaller than a threshold T , i.e.,
if

| ( i
tx~ , St) - ( 1~ i

tx , St)| / ( 1~ i
tx , St) T , (10)

the algorithm will stop.
 On the other hand, the major goal of GPSR is to find the
optimal  i

t
~ by minimizing Eq. (9), where  i

tx~ =  i
t

~ . Without
considering video characteristics, the solution obtained by
minimizing Eq. (9) may be over-sparse, leading to lower visual
quality. To preserve the video characteristic for a non-key frame,
its SI, i.e., the correlations among this frame and its neighboring
frames, can be exploited. By adding an extra term, a quality-
preserving fitness function can be derived as:

F( i
t

~) = W1×F1( i
t

~) + W2×F2( i
t

~), (11)
where F1( i

t
~) is defined by Eq. (9) and F2( i

t
~) is defined as:

F2( i
t

~) = ||  i
t

~ - St||2, (12)
where St = St, St is the SI of xt = t. and W1 and W2 are
weighting coefficients, empirically set by 0.9 and 0.1, respectively.
Initially,   ,~

St
i

t   F2( i
t

~) = 0, and i = 0. When i increases,
F2( i

t
~) will increase while F1( i

t
~), i.e., Eq. (9), will decrease.

The major goal to evaluate Eq. (11) is that while GPSR attempts to
minimize F1( i

t
~), the similarity between  i

t
~ and St should be

preserved to a certain degree. Hence, the second stopping
criterion can be determined as follows. If F( i

t
~) in Eq. (11),

when compared with the one obtained in the previous iteration, is
increased, i.e., if

F( i
t

~) - F( 1~ i
t) > 0, (13)

the algorithm will stop. In addition, when the relative change in Eq.
(11) is smaller than a threshold TF (default TF = 0.001), i.e., if

|F( i
t

~) - F( 1~ i
t)| / F( 1~ i

t) TF, (14)
the algorithm will stop. This is the third stopping criterion.
 Based on our simulations, when the measurement rate (MR) for
a non-key frame is low, the initial solution (initialized by its SI) is
already very close to the optimal solution. The algorithm can
usually stop in few iterations, and the first stopping criterion is
very suitable. When MR is high, the other two criteria should be
also exploited. The stopping criteria at DCVS decoder for a non-
key frame  i

tx~ at the i-th iteration can be summarized as follows:
(a) MR is low (MR 20%): if Eq. (10) with T = 0.9 is satisfied,
the algorithm will stop.

1171

(b) MR is middle (20% < MR 70%): if Eq. (10) with T = 0.05 or
Eq. (13) is satisfied, the algorithm will stop.
(c) MR is high (MR > 70%): if Eq. (14) is satisfied, the algorithm
will stop.
The above-mentioned thresholds, T and TF, are empirically
decided, and fixed for all test video sequences. Finally, xt can be
reconstructed via

ttx ~~  , where
t

~ is the final solution obtained
by GPSR. Our DCVS decoding procedure is summarized in Fig. 2.

Measurement vector yt
for each non-key frame

Initialization by
SI generation

Reconstructed
previous key frames

GPSR
optimization

Stopping
criteria
(a)-(c)Non-stop Stop

ttx ~~ Reconstructed non-
key frame tx~

Fig. 2. Our DVCS decoder.

4. SIMULATION RESULTS
In this paper, two CIF (frame size: 352×288) video sequences (300
Y frames for each), Coastguard and Foreman, with GOP size = 3,
and different measurement rates (MRs) were employed to evaluate
the proposed DVCS method. For example, the average MR = 30%
means that the MRs for each key and non-key frames are 50% and
20%, respectively. The three known sparse signal reconstruction
algorithms, GPSR [9], TwIST [10], and OMP [11], with default
settings were used for comparisons with our DVCS. The three
algorithms were applied to each frame individually. For OMP [11],
the reconstruction complexity will be too expensive if it is directly
applied to a whole frame. As suggested by [8], OMP can be
individually applied to each 32×32 block with good trade-off
between CS efficiency and reconstruction complexity. The four
evaluated algorithms used the same measurement matrix, SBHE [7]
and the same basis matrix, DWT. The four algorithms possess the
same low-complexity encoder (the same CS measurement process).

The average PSNR performances at different average MRs for
the two sequences are shown in Fig. 3(a) and (b), respectively. The
average reconstruction complexities (in seconds) for obtaining Fig.
3(b) are shown in Fig. 4(a). The average PSNR performances at
different reconstruction complexities at MR = 30% for the
Foreman sequence are shown in Fig. 4(b). It can be observed from
Figs. 3 and 4(a) that the PSNR performances of our DCVS can
outperform or be comparable with the three known algorithms,
especially at low MRs, with lower or comparable reconstruction
complexities. At lower MRs, initializing by SI in our method can
achieve good performances while at higher MRs, all the four
algorithms can achieve similar performances. For the Coastguard
sequence with slower motions, the SI is more accurate than that of
the Foreman sequence, and better performance can be achieved.
Based on Fig. 4(b), the PSNR performances of our DCVS can
significantly outperform the three known algorithms at the same
reconstruction complexities.

(a) (b)

Fig. 3. The MR-PSNR performances for the: (a) Coastguard and (b)
Foreman sequences.

(a) (b)

Fig. 4. (a) The reconstruction complexities for the Foreman sequence.
(b) The PSNR performance at different reconstruction complexities for
the Foreman sequence.

5. CONCLUSIONS
In this paper, a distributed compressive video sensing (DCVS)
framework is proposed to simultaneously capture and compress
videos at the low-complexity encoder and efficiently reconstruct
videos at the decoder. For future researches, the key components,
such as measurement matrix and reconstruction algorithm, in
compressive video sensing should be designed based on video
characteristics. The theoretical number of measurements for signal
perfect reconstruction in Eq. (2) should also be further reduced
with side information incorporated. In addition, efficient
quantization and entropy coding techniques for CS measurements
should be investigated to achieve complete video compression.

ACKNOWLEDGEMENT

This work was supported in part by National Science Council, ROC, under
Grants NSC 95-2422-H-001-031 and NSC 97-2628-E-001-011-MY3.

REFERENCES
[1] F. Pereira et al., “Distributed video coding: selecting the most

promising application scenarios,” Signal Processing: Image
Communication, vol. 23, pp. 339-352, 2008.

[2] C. Guillemot et al., “Distributed monoview and multiview video
coding: basics, problems and recent advances,” IEEE Signal
Processing Magazine, vol. 24, no. 5, pp. 67-76, Sept. 2007.

[3] J. Romberg, “Imaging via compressive sampling,” IEEE Signal
Processing Magazine, vol. 25, no. 2, pp. 14-20, Mar 2008.

[4] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F.
Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive
sampling,” IEEE Signal Processing Mag., vol. 25, pp. 83-91, 2008.

[5] V. K. Goyal, A. K. Fletcher, and S. Rangan, “Compressive sampling
and lossy compression,” IEEE Signal Processing Mag., vol. 25, 2008.

[6] M. F. Duarte, M. B. Wakin, D. Baron, and R. G. Baraniuk, “Universal
distributed sensing via random projections,” Proc. ACM/IEEE Int. Conf.
on Information Processing in Sensor Networks, 2006.

[7] L. Gan, T. T. Do, and T. D. Tran, “Fast compressive imaging using
scrambled hadamard ensemble,” Proc. EUSIPCO, 2008 (Matlab code
available from http://thanglong.ece. jhu.edu/CS/).

[8] V. Stankovic, L. Stankovic, and S. Cheng, “Compressive video
sampling,” Proc. EUSIPCO, Lausanne, Switzerland, August 2008.

[9] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient
projection for sparse reconstruction: application to compressed sensing
and other inverse problems,” IEEE Journal of Selected Topics in Signal
Processing, vol. 1,no. 4, pp. 586-597, Dec. 2007 (Matlab code
available from http://www.lx.it.pt/~mtf/GPSR).

[10] J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: two-step
iterative shrinkage/thresholding algorithms for image restoration,”
IEEE Trans. on Image Processing, vol. 16, Dec. 2007 (Matlab code
available from http://www.lx.it.pt/~bioucas/ TwIST/TwIST.htm).

[11] T. Blumensath and M. E. Davies, “Gradient pursuits,” IEEE Trans. on
Signal Processing, vol. 56, June 2008 (Matlab code available from
http://www.see.ed.ac.uk/~tblumens/sparsify/ sparsify.html).

[12] “AviSynth MSU frame rate conversion filter,” http://www.
compression.ru/video/frame_rate_conversion/index_en_msu.html.

1172

