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ABSTRACT 
Low-complexity video encoding has been applicable to several 
emerging applications. Recently, distributed video coding (DVC) 
has been proposed to reduce encoding complexity to the order of 
that for still image encoding. In addition, compressive sensing (CS) 
has been applicable to directly capture compressed image data 
efficiently. In this paper, by integrating the respective 
characteristics of DVC and CS, a distributed compressive video 
sensing (DCVS) framework is proposed to simultaneously capture 
and compress video data, where almost all computation burdens 
can be shifted to the decoder, resulting in a very low-complexity 
encoder. At the decoder, compressed video can be efficiently 
reconstructed using the modified GPSR (gradient projection for 
sparse reconstruction) algorithm. With the assistance of the 
proposed initialization and stopping criteria for GRSR, derived 
from statistical dependencies among successive video frames, our 
modified GPSR algorithm can terminate faster and reconstruct 
better video quality. The performance of our DCVS method is 
demonstrated via simulations to outperform three known CS 
reconstruction algorithms. 

Index Terms—compressive video sensing, (distributed) 
compressive sampling/sensing, distributed video coding 

 
1. INTRODUCTION 

Low-complexity video coding has been potentially applicable for 
several emerging applications, such as video conferencing with 
mobile devices and wireless visual sensor networks (WVSN) [1]. 
Since the low-complexity restriction for a video device, efficient 
video compression is challenging. Recently, distributed video 
coding (DVC) [2] based on the principle of distributed source 
coding (DSC) has been proposed to reduce video encoding 
complexity to the order of that for still image encoding while 
preserving a certain coding efficiency. In DVC, the major 
encoding computation burden can be shifted to the decoder, which 
is usually allowed to possess powerful computational capability in 
several real applications (e.g., WVSN). 

However, for still image encoding, it is required to capture 
huge amounts of raw image data first, followed by performing 
some transformation operator (e.g., discrete wavelet transform, i.e., 
DWT), which is also computation-intensive [3]. Recently, with the 
advent of a single-pixel camera [4], compressive sensing (CS) [3]-
[8] has been applicable to directly capture compressed image data 
efficiently. The compressed image can be reconstructed using 
some CS reconstruction algorithms at the decoder. Similar to DVC, 
the computation burden can be shifted to the decoder. 

However, for compressing huge amounts of video data, it may 
not be efficient enough to only reduce the encoding complexity or 
only to individually apply CS to each frame without considering 
similarities among successive frames. In this paper, by integrating 
the respective characteristics of DVC and CS, a distributed 
compressive video sensing (DCVS) framework is proposed to 
simultaneously capture and compress video data. Almost all 

computation burdens can be shifted to the decoder where our 
modified GPSR (a kind of CS reconstruction algorithm) 
incorporating with the statistical dependencies among successive 
frames is exploited to reconstruct video data. 

The characteristics of our DCVS includes: (i) very low-
complexity encoder: only general CS measurement process 
(described in Sec. 2.3) will be individually applied to each frame; 
and (ii) very efficient decoder: by applying the proposed 
initialization and stopping criteria for GRSR (described in Sec. 4), 
the convergence speed and reconstructed video quality using our 
modified GPSR can be, respectively, faster and better than those 
using the original GPSR [9], TwIST (two-step iterative shrinkage/ 
thresholding) [10], and OMP (orthogonal matching pursuit) [11]. 

 
2. RELATED WORKS 

In this section, several related works, including DSC, DVC, CS, 
compressive image/video sensing, and distributed CS will be 
reviewed first. Then, the proposed DCVS based on DVC and CS 
will be addressed in Sec. 3. 
2.1. Distributed source coding (DSC) 
Assume that W and S are two statistically dependent discrete 
signals, which are encoded independently but decoded jointly. 
Slepian-Wolf theorem [2] states the achievable rate region for 
lossless coding is defined by RW  H(W|S), RS  H(S|W), and RW + 
RS  H(W, S), where RW and RS are the rates for encoding W and S, 
respectively, H(W|S) and H(S|W) are the conditional entropies of W 
and S, respectively, and H(W, S) is the joint entropy of W and S. 
Then, Wyner-Ziv theorem [2] states DSC with side information (SI) 
for lossy coding. Assume that S is known as the SI of W. The 
conditional distortion function for W is unchanged no matter S is 
available only at the decoder, or both at the encoder and decoder. 
2.2. Distributed video coding (DVC) 
In DVC [1]-[2], based on Wyner-Ziv theorem, the statistical 
dependency between a frame W and its SI S is modeled as a virtual 
correlation channel, where S can be viewed as a noisy version of W. 
The correlation between W and S can be modeled as a Laplacian 
distribution as follows: 

        baSbaWebaSbaWP ,,

2
,,   ,             (1) 

where W(a, b) and S(a, b) are the (a, b)-th pixel in W and S, 
respectively, and   0 is the model parameter, where  2 , 
and  is the standard deviation of (W(a, b) - S(a, b)). At the 
encoder, without performing motion estimation, the compression 
of W can be achieved by transmitting only part of the parity bits 
(Wyner-Ziv bits) derived from the channel-encoded version of W 
according to the request from the decoder via the feedback channel. 
The decoder uses the received Wyner-Ziv bits and the SI S derived 
from previous decoded frames to perform channel decoding to 
correct some “errors” in S for the reconstruction of W. In 
transform-domain DVC, the Wyner-Ziv bits are generated by 
performing some transformation operator, followed by performing 
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scalar quantization and channel encoding. Hence, the complexity 
of the DVC encoder is similar to that of still image encoder 
consisting of transformation, quantization, and entropy encoding. 
2.3. Compressive sensing (CS) 
Assume that a sparse basis matrix  with size N×N can provide a 
K sparse representation for a real value signal x with length N. 
That is, x can be represented as x =  and  with length N can be 
well approximated using only K << N non-zero entries. CS [3]-[8] 
states that x can be accurately reconstructed by taking only: 

M = O(Klog(N/K)),                                    (2) 
where K < M << N, linear and non-adaptive  measurements from: 

y = x =  = A ,                                    (3) 
where y is an M×1 vector,  is an M×N measurement matrix that is 
incoherent with , and A = . More specifically, the M 
measurements in y are random linear combinations of the entries of 
, which can be viewed as the compressed and encrypted version 

of x. Currently, it is unclear that how to efficiently quantize and 
entropy-encoded the M measurements [5], which will be left for 
the future research. To reconstruct  from y, CS is based on 
solving the convex optimization problem [3]-[10] (e.g., linear 
programming or GPSR [9]) or some iterative greedy algorithms 
(e.g., OMP [11]). Finally, x can be reconstructed via ~~ x , 
where ~ is the reconstructed . 
2.4. Compressive image/video sensing 
In compressive image sensing, if an image x can be sparsely 
represented using a basis  (e.g., DWT), x can be compressed via 
the CS technique in Eq. (3) and reconstructed via some CS 
recovery algorithms [3]-[11]. On the other hand, compressive 
video sensing has been first proposed in [8], where each video 
block, at the encoder, is classified to be either sparse or non-sparse 
via a CS test. Each sparse block is compressed via CS, whereas 
each non-sparse block is fully sampled. 
2.5. Distributed compressive sensing (DCS) 
Distributed compressive sensing (DCS) [6] exploits both intra-
signal and inter-signal correlation structures. Consider a sensor 
network scenario, several sensors measure signals that are each 
individually sparse in a certain basis and also correlated among 
sensors. In DCS, each signal is independently measured via a CS 
technique and jointly reconstructed at a collection point collecting 
measurements from multiple sensors. 
 

3. DISTRIBUTED COMPRESSIVE VIDEO SENSING (DCVS) 
In this section, the joint sparsity model of our DCVS is first 
described in Sec. 3.1 to show the guideline for exploiting the 
statistical dependencies among successive frames. In our DCVS 
encoder described in Sec. 3.2, each frame is independently 
compressed via a CS measurement process. In our DCVS decoder, 
each frame is jointly reconstructed using our modified GPSR 
incorporating the proposed initialization derived from DVC side 
information generation and the proposed stopping criteria derived 
from statistical dependencies among successive frames, described 
in Secs. 3.3-3.6. Note that our DCVS, at its current status, is only 
designed for single-view videos, which can be extended to 
multiview video scenario, and can be applicable in a WVSN. 
3.1. Joint sparsity model 
To exploit the correlation among successive frames, similar to [6], 
the joint sparsity model in our DCVS can be described as follows. 
Assume two successive frames, xt and xt+1, in the same scene are 
visually similar, where t is the time instant. That is, xt and xt+1 
should have similar common portion and respective unique 
portions. Conceptually, the two frames can be expressed as: 

xt = xC + xt_U,                                           (4) 
xt+1 = xC + xt+1_U,                                     (5) 

where xC is the similar/common portion between xt and xt+1, xt_U 
and xt+1_U are the unique portions of xt and xt+1, respectively. By 
treating xt as a reference frame for xt+1, in conventional video 
coding, the encoder will perform motion estimation to find the 
predictor (similar to xC) for xt+1 and encode the difference (similar 
to xt+1_U) between xt+1 and its predictor. Hence, the compression of 
xt and xt+1 can be achieved by compressing xt and xt+1_U. Assume a 
sparse basis matrix  can provide Kt and Kt+1_U sparse 
representations for xt and xt+1_U, respectively, as: 

xt = t, || t||0 = Kt,                                         (6) 
xt+1_U = t+1_U, || t+1_U||0 = Kt+1_U,              (7) 

where t and t+1_U are the sparse representations of xt and xt+1_U, 
respectively, and || ||0 is the number of nonzero entries in , i.e., 0 
norm of . Usually, Kt  Kt+1_U, and based on Eq. (2), Mt  Mt+1_U, 
where Mt and Mt+1_U are the number of measurements of xt and 
xt+1_U, respectively. Although, in DCVS, it is impossible to find 
xt+1_U at the encoder due to low-complexity restriction, it can be 
confirmed that the number of measurements (Mt+1) of xt+1 can be 
smaller than that (Mt) of xt if the correlation between them can be 
adequately exploited by treating xt as a reference frame for xt+1. 
3.2. DCVS encoder 
In DCVS, a video sequence consists of several GOPs (group of 
pictures), where a GOP consists of a key frame followed by some 
non-key frames. Conceptually, each key frame serves as a 
reference frame for its neighboring non-key frames. At our DCVS 
encoder shown in Fig. 1, without performing motion estimation, 
without needing any prior knowledge about correlation among 
successive frames, and without performing extra tasks (no 
additional burden) in the CS process described in Sec. 2.3, each 
frame xt (key frame or non-key frame) with size N is compressed 
via the CS measurement process (Eq. (3)) as: 

                           yt = xt,                                          (8) 
where yt is the measurement vector with size Mt×1 and  is the  
Mt×N measurement matrix described later. Based on the joint 
sparsity model in Sec. 3.1, the measurement rate (MR) of a key 
frame should be larger than that of a non-key frame. The MR for a 
frame Xt can be defined as MRt = Mt/N. 

CS measurement
yt = Фxt

Each frame xt
Measurement vector 
(compressed frame) yt  

Fig. 1. Our DCVS encoder. 
Here, the exploited measurement matrix  is the scrambled 

block Hadamard ensemble (SBHE) matrix [7], which takes the 
partial block Hadamard transform, followed by randomly 
permuting its columns. SBHE has been shown to satisfy the five 
requirements, including near optimal performance, university, fast 
computation, memory efficient, and hardware friendly, and 
outperform several existing ones (e.g., the Gaussian i.i.d matrix 
and the binary sparse matrix) [7]. The sparse basis matrix  used 
in this paper is DWT basis. 

After performing the CS process, the measurement vector yt for 
each frame xt (the compressed version for xt) will be transmitted to 
the decoder. At the decoder, each key frame is reconstructed via 
the GPSR algorithm [9] while each non-key frame is reconstructed 
via GPSR incorporating with the statistical dependencies among 
successive frames, to be addressed in Secs. 3.3-3.6. 
3.3. Gradient projection for sparse reconstruction (GPSR) 
At the decoder, each key frame xt = t with size N is 
reconstructed via GPSR [9], which solves the convex 
unconstrained optimization problem as: 
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2 ttt Ay
t




                              (9) 

where yt is a Mt×1 vector, yt = xt, A =  is a Mt×N matrix, ||v||2 
is the Euclidean norm ( 2 norm) of v, ||v||1 is the 1 norm of v, i.e., 
the sum of the absolute value of each component in v, and  is a 
non-negative parameter. GPSR is essentially a gradient projection 
(GP) algorithm applied to a quadratic programming formulation of 
Eq. (9), in which the search path for each iteration is obtained by 
projecting the negative-gradient direction onto the feasible set [9]. 

Each key frame is reconstructed via GPSR [9] with default 
settings in the public GPSR code included in the “Fast CS using 
SRM” tool [7]. In GPSR, the default initial solution for t is a zero 
vector. The default stopping criterion of GPSR is that when the 
relative change in the number of nonzero components in t is 
smaller than a threshold TA (default TA = 0.01), the algorithm will 
stop. Finally, the key frame xt can be reconstructed via 

ttx ~~  , 
where 

t
~  is the final solution obtained by GPSR. Note that the 

used GPSR included in [7] is an older version. Recently, the latest 
version called GPSR 5.0 [9] providing a novel default stopping 
criterion has been released. However, our simulations show that 
the older version can provide a better tradeoff between 
reconstructed video quality and reconstruction complexity. 
3.4. Side information (SI) generation 
In DCVS, each non-key frame is reconstructed via GPSR with the 
proposed initialization and stopping criteria, derived from the 
statistical dependencies among successive frames. Before 
reconstructing a non-key frame xt, the decoder will generate its SI 
St first, which can be viewed as a noisy version of xt. Similar to 
DVC [2], SI can be generated by motion-compensated 
interpolation from previous reconstructed neighboring key frames. 
In DCVS, a very efficient frame rate up-conversion tool [12] is 
exploited to generate the SI for each non-key frame. 
3.5. Initialization at DCVS decoder 
In our modified GPSR for reconstructing each non-key frame xt = 

t, the initial solution for t is set to by its SI St as follows: 
  ,~ 0

Stt    i.e.,   ,~ 0
tt Sx   where  0~

t  is the initial solution (at the 0-
th iteration) for t, St = St, and St is the SI of xt. In the same 
scene, successive frames should have a certain similarity. Hence, 
the SI derived from the neighboring key frames for a non-key 
frame should be similar to this frame, even though the SI may be 
coarse due to fast motions, poor SI generation, or poor neighboring 
reconstructed key frames. Based on Sec. 3.1, the measurement rate 
for a non-key frame is usually set to be smaller than that of a key 
frame. To get a good reconstructed non-key frame, it is required to 
have a good initialization, followed by GPSR optimization where 
proper stopping criteria are required to get optimal or near-optimal 
solution after a small number of iterations. 
3.6. Stopping criteria at DCVS decoder 
It is usually difficult to decide when GPSR can stop without 
incurring excessive computation [9] and with sufficient 
reconstruction quality. At DCVS decoder, the stopping criteria for 
GPSR are designed based on the statistical correlation between the 
current non-key frame and its SI. Consider a non-key frame xt, its 
SI St, and the reconstructed xt at the i-th iteration, denoted by  i

tx~ . 
Based on Sec. 2.2, the correlation between xt and St can be 
modeled as a Laplacian distribution with the parameter (xt, St). 
The more similar xt and St are, the larger (xt, St) is. Similarly,  i

tx~  
and St can be modeled by (  i

tx~ , St) while  i
tx~  and xt can be 

modeled by (  i
tx~ , xt). Obviously, if xt can be perfectly 

reconstructed by  i
tx~ , (  i

tx~ , xt) = . Hence, if  i
tx~  can be found 

to maximize (  i
tx~ , xt),  i

tx~  should be very similar to xt. Initially, 
 

tt Sx 0~  and hence (  i
tx~ , St) =  >> (  i

tx~ , xt) for i= 0. When i 
increases, (  i

tx~ , St) will first decrease rapidly and then slowly 
decrease while (  i

tx~ , xt) will slowly increase. If excess iterations 
(i becomes larger) are performed, (  i

tx~ , xt) may decrease, i.e., 
 i
tx~  may begin to be distant from xt. However, at the decoder, xt is 

unknown and only (  i
tx~ , St) can be known. Under this 

circumstance, it is not guaranteed that when (  i
tx~ , St) decreases 

and (  i
tx~ , xt) increases. Hence, the first stopping criterion can 

be determined as follows. When the relative change in the 
Laplacian parameter (  i

tx~ , St) is smaller than a threshold T , i.e., 
if 

| (  i
tx~ , St) - (  1~ i

tx , St)| / (  1~ i
tx , St)  T ,            (10) 

the algorithm will stop. 
 On the other hand, the major goal of GPSR is to find the 
optimal  i

t
~  by minimizing Eq. (9), where  i

tx~  =  i
t

~ . Without 
considering video characteristics, the solution obtained by 
minimizing Eq. (9) may be over-sparse, leading to lower visual 
quality. To preserve the video characteristic for a non-key frame, 
its SI, i.e., the correlations among this frame and its neighboring 
frames, can be exploited. By adding an extra term, a quality-
preserving fitness function can be derived as: 

F(  i
t

~ ) = W1×F1(  i
t

~ ) + W2×F2(  i
t

~ ),             (11) 
where F1(  i

t
~ ) is defined by Eq. (9) and F2(  i

t
~ ) is defined as: 

F2(  i
t

~ ) = ||  i
t

~  - St||2,                                     (12) 
where St = St, St is the SI of xt = t. and W1 and W2 are 
weighting coefficients, empirically set by 0.9 and 0.1, respectively. 
Initially,   ,~

St
i

t    F2(  i
t

~ ) = 0, and i = 0. When i increases, 
F2(  i

t
~ ) will increase while F1(  i

t
~ ), i.e., Eq. (9), will decrease. 

The major goal to evaluate Eq. (11) is that while GPSR attempts to 
minimize F1(  i

t
~ ), the similarity between  i

t
~  and St should be 

preserved to a certain degree. Hence, the second stopping 
criterion can be determined as follows. If F(  i

t
~ ) in Eq. (11), 

when compared with the one obtained in the previous iteration, is 
increased, i.e., if 

F(  i
t

~ ) - F(  1~ i
t ) > 0,                                  (13) 

the algorithm will stop. In addition, when the relative change in Eq. 
(11) is smaller than a threshold TF (default TF = 0.001), i.e., if 

|F(  i
t

~ ) - F(  1~ i
t )| / F(  1~ i

t )  TF,                 (14) 
the algorithm will stop. This is the third stopping criterion. 
 Based on our simulations, when the measurement rate (MR) for 
a non-key frame is low, the initial solution (initialized by its SI) is 
already very close to the optimal solution. The algorithm can 
usually stop in few iterations, and the first stopping criterion is 
very suitable. When MR is high, the other two criteria should be 
also exploited. The stopping criteria at DCVS decoder for a non-
key frame  i

tx~  at the i-th iteration can be summarized as follows: 
(a) MR is low (MR  20%): if Eq. (10) with T  = 0.9 is satisfied, 
the algorithm will stop. 
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(b) MR is middle (20% < MR  70%): if Eq. (10) with T  = 0.05 or 
Eq. (13) is satisfied, the algorithm will stop.  
(c) MR is high (MR > 70%): if Eq. (14) is satisfied, the algorithm 
will stop. 
The above-mentioned thresholds, T  and TF, are empirically 
decided, and fixed for all test video sequences. Finally, xt can be 
reconstructed via 

ttx ~~  , where 
t

~  is the final solution obtained 
by GPSR. Our DCVS decoding procedure is summarized in Fig. 2. 

Measurement vector yt
for each non-key frame

Initialization by 
SI generation

Reconstructed 
previous key frames

GPSR 
optimization

Stopping 
criteria 
(a)-(c)Non-stop Stop

ttx ~~ Reconstructed non-
key frame tx~  

Fig. 2. Our DVCS decoder. 
 

 

4. SIMULATION RESULTS 
In this paper, two CIF (frame size: 352×288) video sequences (300 
Y frames for each), Coastguard and Foreman, with GOP size = 3, 
and different measurement rates (MRs) were employed to evaluate 
the proposed DVCS method. For example, the average MR = 30% 
means that the MRs for each key and non-key frames are 50% and 
20%, respectively. The three known sparse signal reconstruction 
algorithms, GPSR [9], TwIST [10], and OMP [11], with default 
settings were used for comparisons with our DVCS. The three 
algorithms were applied to each frame individually. For OMP [11], 
the reconstruction complexity will be too expensive if it is directly 
applied to a whole frame. As suggested by [8], OMP can be 
individually applied to each 32×32 block with good trade-off 
between CS efficiency and reconstruction complexity. The four 
evaluated algorithms used the same measurement matrix, SBHE [7] 
and the same basis matrix, DWT. The four algorithms possess the 
same low-complexity encoder (the same CS measurement process). 

The average PSNR performances at different average MRs for 
the two sequences are shown in Fig. 3(a) and (b), respectively. The 
average reconstruction complexities (in seconds) for obtaining Fig. 
3(b) are shown in Fig. 4(a). The average PSNR performances at 
different reconstruction complexities at MR = 30% for the 
Foreman sequence are shown in Fig. 4(b). It can be observed from 
Figs. 3 and 4(a) that the PSNR performances of our DCVS can 
outperform or be comparable with the three known algorithms, 
especially at low MRs, with lower or comparable reconstruction 
complexities. At lower MRs, initializing by SI in our method can 
achieve good performances while at higher MRs, all the four 
algorithms can achieve similar performances. For the Coastguard 
sequence with slower motions, the SI is more accurate than that of 
the Foreman sequence, and better performance can be achieved. 
Based on Fig. 4(b), the PSNR performances of our DCVS can 
significantly outperform the three known algorithms at the same 
reconstruction complexities. 
 

  
(a)                                                        (b) 

Fig. 3. The MR-PSNR performances for the: (a) Coastguard and (b) 
Foreman sequences. 

  
(a)                                                        (b) 

Fig. 4. (a) The reconstruction complexities for the Foreman sequence. 
(b) The PSNR performance at different reconstruction complexities for 
the Foreman sequence. 
 

5. CONCLUSIONS 
In this paper, a distributed compressive video sensing (DCVS) 
framework is proposed to simultaneously capture and compress 
videos at the low-complexity encoder and efficiently reconstruct 
videos at the decoder. For future researches, the key components, 
such as measurement matrix and reconstruction algorithm, in 
compressive video sensing should be designed based on video 
characteristics. The theoretical number of measurements for signal 
perfect reconstruction in Eq. (2) should also be further reduced 
with side information incorporated. In addition, efficient 
quantization and entropy coding techniques for CS measurements 
should be investigated to achieve complete video compression. 
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