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ABSTRACT

In the paper, we propose a new method for blind separation of
an arbitrary number of images from a set of their linear mix-
tures with unknown coefficients. This approach is as follows.
We first introduce a novel multiple correlation between one
image and a set of multiple images. Then this multiple cor-
relation leads us to provide a set of simultaneous linear equa-
tions for updating each mixture of images. Finally, source
images are recovered by iterating between solving the sets of
equations and cyclically permuting the mixtures of images.
The technique can be applied for extracting multiple layers
from images containing multiple reflections and transparency.

Index Terms— Image processing, Image reconstruction

1. INTRODUCTION

Blind source separation (BSS), which aims at recovering
unknown source signals from their linear mixtures with-
out knowing the mixing coefficients, has recently received
considerable attention in the image processing community
[4]. The most of current blind source separation techniques
are based straightforwardly on the independent component
analysis (ICA) [1, 6, 7]. ICA-based blind source separation
methods are able to handle an arbitrary number of sources.
However, as far as blind image separation is concerned, these
methods often suffer from poor separation results [8, 9].

Recently, excellent image separation results have been ob-
tained with a variety of approaches without explicitly using
ICA[5,8,9, 10]. The most of these approaches are, however,
limited to separation of mixtures of two images, and thus they
cannot be used for separating layers from images containing
multiple reflections and transparency (see Fig. 2(a)).

Our work is inspired by the recent work of Sarel and Irani
[8], who successfully separated mixtures of two independent
images by a correlation-based information exchange between
mixtures of images. In this paper, their method will be ex-
tended to the case of mixtures of an arbitrary number of im-
ages. This approach is as follows. We first introduce a mul-
tiple correlation between one image and a set of multiple im-
ages. Then this multiple correlation leads us to provide a set
of simultaneous linear equations for updating each mixture of
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images. Finally, source images are estimated by iterating be-
tween solving the sets of equations and cyclically permuting
the mixtures of images. We show its effectiveness through
experiments with synthetic and real images.

2. BLIND SEPARATION OF MIXTURES OF
MULTIPLE IMAGES

We propose extension of the two-layer separation method in
[8], adapted to the multi-layer separation. Let {a;}r | =
{(ak1,n9, ok k)T HE | beasetof K different values
for a K -dimensional coefficient vector. Let {I}}f_, be the
corresponding set of the K images obtained by linearly com-
bining K independent images { L4}/, as,

]1 (Z) = 0417] L] (2) + a1’2L2(i) + -+ Ot].’[(L[((Z')7
I)(i) = a1 L1 (i) + a2 2 Lo (i) + - -+ + as, k L (0),

Ik (i) = ag1Li(i) + ax2La(i) + - - + ax k Lk(i),
where I.(i) and Ly (7) are, respectively, the values of the i-th
pixels in the images I, and Ly for k = 1,2,--- , K and N
is the total number of pixels. Now, for given linear mixtures
{I}_| with unknown coefficient vectors {av;, } X, we will
estimate (constant times each of) the most likely source im-

ages {Lk}ﬁil.

2.1. The MGNGC Measure

We introduce a multiple correlation, which we will refer to as
the Multiple Generalized Normalized Gray-scale Correlation
(MGNGC) measure, between an image fx and the other
K — 1images {f3}r ! as,

MGNGOK(fhf?: e 7fK71; fK) =

S MNGCE (fu. for - Fre—s Ji0) Ty Vilfe)

N K
Zi:l Hk:l Vi (fk)

where M NGCrk i (f1, fa, -+, fk—1; fr) is the multiple cor-

relation coefficient between the partial image (hereafter re-
ferred to as the “i-th partial image”) composed of W x W

,(2)
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pixels centered at a pixel i in fx and the i-th partial images
in {fx} ,f:’ll and, by the definition of the multiple correlation
coefficient, is expressed as

rif) = 1o @)

MNGCk,i(f1, fo. - T
K.K

where 7% - is the K K-th element of the inverse matrix
(R%) ™! of the correlation matrix

1 1,2 Ti K
X 21 1 e T
e G @
Té(.; 7"%(,2 1
where 7}, & _Gillwa) (] = 1,2,---,K), where

V Vilfe)Vilar)

Vi(fr) is the variance of the i-th partial image in f; and
C'i(fr, g1) is the covariance between the i-th partial images in
fr and g;. The M GNGC measure is a multiple-correlation-
based extension of generalized normalized gray-scale cor-
relation (GNGC') measure [8] and forms the basis of our
algorithm to be discussed in the next subsection.

2.2. Algorithm

We present a method for separating linear mixtures of an ar-
bitrary number of images based on the development of the
previous subsection. Given as inputaset, {Ix }£_,, of K mix-
tures, our algorithm can be run in the following two steps.

Step.0 Initialize {] ,gt) }e, as follows and then set the itera-
tion number ¢ to 1.

7" L
b I
R )
1}?) Ik
Step.1 Findminimizer(a§t),ogt), - ,O'(t) ) of the MGNGC
measurebetween] Zk | Ok I f R and{IU 2
as follows.
(cr](t), (),--- ,0(,;)71) = argmin
01,02, , 0K —1

t—1 t—1
1D =D

K-1
MGNGC(I{"™V ... - ™)
k=1

(6)

Step.2 Update I;fl) to I};fl) - k 1 (t) ,gt ") and then
permute cyclically {7 ,Et_l)} by as follows. Then let
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t < t + 1 and return to step 1.

t t—1 K—1 _(t) (t—1
0N (1T o
I(t) I](tfl)
I(t) — =y 7)
.t t;l
i e

In the following, we will derive update equations for

{o} 1" in the Step 1. First we devide (4) into four blocks
as,
i 1‘2Z o ’l"i o
RK — K—1 K-1 , (8)
(ri—)” | 1

where R is a K — 1 dimensional square matrix and 7% _,
is a K — 1 dimensional vector. Hence, from the definition of
the inverse matrix, 75 5 included in (3) is expressed as

~i det( 1;(71)

r = —, 9
KR qet(RYL) ©

where det(-) denotes the matrix determinant. By first assum-
ing det(R%_,) # 0 and then applying the formula [3] for the
determinant of a block matrix to (8), we have

det(Ri) = det(Ric ;) - (1— (ko) (Ric 1) 1),
(10)
where () ! denotes the inverse matrix. Using (10), we can
rewrite (9) as,
, 1
TR K = : . —. an
T = ik )T (R_y)
Hence, using (11), we can rewrite (3) as,

MNGCk i(fi, f2, -, fr—1; fK)
= \/(rig )T (Ric ) e, (12)

Now, let us rewrite the objective function defined in (6) using
(2) as (omitting subscript ¢ — 1),

MGNGCk(Iy, Iy, ,Ig_1:1)
U,
Zz 1K 1 (13)
~ Y VIS Vi)
where I and U; are, respectively, as follows.
N K—1
I=1Ikg— Zaklk; (14)
K-l
U, = MNGCE (I, -+, Ik ; DVi(I) ] VilI)-
k=1
(15)



Thus, using (12), we can rewrite (15) as,

K1
U, = ((uy )" Uk ) ) [ Ville),  (16)
k=1
where U’ _, and uk,_, are, respectively,
1 “Zi,z “‘Zi,Kfl
p (L 1 (R
Uk = . (17)
“?(71,1 ui,(7172 1
i i i i T
up = (ul g, ub g, s Uk k) (18)
where uj, , = NGCi(It, I) (k,1=1,2, -, K).

Taking partial derivatives of (16) with respect to o, for

k=1,2,--- /K —1, we get
8‘1’1_(811’:;(,1)’[. ov;
aok N aok 8’11,7K 1
K—1
= 2(Cillk, Ix) - Zom (I, 1)) TT vt
=1
(k:LGwK—I) (19)

So, the partial derivatives of the denominator, Zi\; v, of
(13) with respect to o, for k = 1,2, --- , K — 1, are given by

5 N
— U,
oy, Z
N K—1 K1
=2 (Gl i) = Y owCilhi 1) T] Vi)
i=1 m=1 =1
(k=1,2,--- K —1). (20)
Further, one can easily see that for k = 1,2,--- | K — 1, the

partial derivatives of the numerator, ZZ]L Vi(I) ,5:71] Vi(ly),
of (13) with respect to oy, is also equal to (20). Hence, in-
stead of setting the partial derivatives of (13) to zero, set-
ting the partial derivatives of (20), with respect to o, for
k= 1,2,--- K — 1, to zero, we get (the details of the
derivation are described in the Appendix)

K—1

Z(Z@ i T) TT V1)) om

m=1 i=1 =1

K-1
:Zcq

I, I) H vith) (k=1,--- , K —
i=1 =1

1). 1)

(21) is equivalent to a set of K — 1 linear simultaneous equa-
tions with unknowns {o }7;'. Leta!) = (o o ... ,0'(;?7] )T
be the solution of (21) as in (6). Then, the update equations
for {o} }£_," in Step.1 is obtained analytically as,

o0 = (A=) ey, (22)
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where the kl-th element, aitfl)

1)

of the K — 1 dimensional

square matrix A( _, is given by

ZC I(t 1) I(t 1) HV'Z

(kal:1727"'

i—1
ag«l)

K1), (23)

and the [-th element, bl(tfl), of the K — 1 dimensional vector

b(léill) is given by

K-1
b;t—l) ZC 7=1) I(t 1) H ‘/7:(1—()‘7]
m=1

(l:ljju,K—I) (24)

3. EXPERIMENTAL RESULTS

3.1. Synthetic Images

We present experiments with synthetic mixtures of four
known images. Fig. 1(a)~(d) shows the source images. We
mixed them using different mixing ratios (Fig. 1(e)~(h)). For
comparison, we show the results of the ICA-based separation
method [2] and our separation method in Fig. 1(i)~(1) and
Fig. 1(m)~(p), respectively. We can see that our approach
gives very good results, while the separation results of the
ICA-based approach are poor.

3.2. Real Images

We apply our method to layer extraction from images contain-
ing multiple reflections and transparency. We photographed a
picture postcard in a glass-fronted bookcase (Fig. 2(a)). You
can see transparency and double reflections due to light re-
flected from both the surfaces of the front side and rear side
glasses (region surrounded by a rectangle of Fig. 2(a)). We
took three photographs under three different illumination con-
ditions by inserting a polarization sheet at the front or back of
two glasses on the bookcase, or between them (Fig. 2(c)~(e)).
For acquisition of a ground truth transparency image we shot
the same scene while shielding out some of the ambient light
using a blackout curtain (Fig. 2(b)). The results for the mixed
images (c)~(e) in Fig. 2 are shown in Fig. 2(f)~(h). The re-
constructed image (f) in Fig. 2 is similar to the transparency
image (b) in Fig. 2, and both of the ones (g)(h) in Fig. 2 are
also relatively clear.

4. CONCLUSIONS

We have proposed a novel method of recovering a set of
source images from a set of their linear mixtures of multiple
images with unknown mixture coefficients using multiple
correlation analysis. We have derived the separation algo-
rithm, and shown its effectiveness through experiments with
mixtures of synthetic and real images.



Fig. 1. Comparison of our method with the ICA-based method:
(a)~(d) source images, (¢)~(h) mixed images, (i)~(1) reconstructed
images using the ICA-based method, (m)~(p) reconstructed images
using our method.
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(h)
Fig. 2. Separation of layers from mixtures with nearly singular mix-
ing matrices: (a)~(d) source images, (¢)~(h) mixed images (mix-
ing matrix A), (i)~(1) reconstructed images (mixing matrix A),
(m)~(p) mixed images (mixing matrix B), (q)~(t) reconstructed im-
ages (mixing matrix B).

A. DERIVATION OF (21)

Let F' and G be the denominator and the numerator of (13), respec-
tively. Then, from (20), we get

22( (I, IK)_ZUm (I, Im ))HV(II

Taking partial derivatives of (13) with respect to o and setting them
to zero, we get

or _
Ooy,

aak -

B . o (F
0= 5o (MGNGOx(h. I, Ix1:1)) = 8716(5)
1, _0F oG 1 F\ OF
= (%0 " Fon) = (1= &) oo (25)

Then, from the definition of MGNGC and the independency of

{I1}i_,, we have F/G < 1 Hence, we get F/da;, = 0 in (25),
which leads to the following equation.
K—1
OF
o S (et 3 it ) TT Vi =

This equation can be rewritten as,

i(ZC,:(Ik, H Vi) ) om _Zc I, Ixc) H Vi(I)
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