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ABSTRACT

We propose a minimum overlap based hyperspherical 
region graph indexing structure to achieve fast similarity-
based queries for both low and high dimensional datasets.  
Specifically, we reduce the region overlaps in the graph 
construction phase by incrementally dividing each saturated 
hyperspherical region and removing the longest edge of a 
minimum spanning tree representation of the internal 
objects.  This overlap reduction scheme creates more 
separated regions, so fewer regions as potential paths are 
traversed when a query is issued.  We also introduce a k-
nearest-neighbor search scheme by automatically deciding 
the search radius to return the required number of nearest 
neighbors.  Our extensive experimental results show the 
effectiveness of the proposed indexing structure compared 
with other tree and graph based indexing structures. 
 

Index Terms— Hyperspherical region graph, minimum 
spanning tree, overlap reduction, k-nearest-neighbor search. 
 

1. INTRODUCTION 
 
Searching desired information from a large-scale database 
plays an important role in daily activities.  Indexing 
techniques are viable solutions to speed-up the search 
operations.  Various data structures have been proposed to 
index vector representations of objects in the Euclidean 
space.  However, the metric space is more common when 
the objects are images, videos, CAD drawings, XML data, 
DNA sequences, or time series.  Therefore, the research 
trend is to develop efficient indexing techniques for high-
dimensional metric data, where the distance function varies 
with the data types.  However, this is a challenging task 
mainly due to the following factors:  1) Distance functions 
for high dimensional data are expensive.  2) The search 
space tends to be more uniform in terms of the density when 
the dimension increases.  3) It is more difficult to prune data 
during the search process.  Here, we briefly review several 
representative indexing techniques. 

Tree-based metric indexing structures, including M-tree 
[1], Slim-tree [2], DF-Tree [3], PM-Tree [4], and DBM-

Tree [5], are based on regions of fixed sizes.  They directly 
implement each region as a page in the secondary storage.  
They are proven to be suitable for low and medium 
dimensional datasets.  However, high dimensionality makes 
most regions overlap with each other.  Therefore, the 
similarity search algorithms need to consider more regions 
as potential paths to be traversed when a query is issued.  
SA-Tree [6] is a tree-based indexing structure that does not 
use fixed-size regions.  It approximates the Voronoi 
representation of the database objects through distance-
based hierarchical relationships.  It has shown fast response 
times for high dimensional datasets.  Graph-based metric 
indexing structures, such as RNG (Relative Neighborhood 
Graph) [7] and HRG (Hyperspherical Region Graph) [8], 
reduce the overlap between regions using the proximity 
between objects.  They implement each HR (Hyperspherical 
Region) to ensure that two adjacent objects are neighbors in 
the region only if there is not any other object in their 
neighborhood.  The HRG indexing structure further makes 
the representative objects as vertices and region centers to 
facilitate the search process. 

In this paper, we present MOBHRG (Minimum 
Overlap Based HRG) indexing structure, an improvement 
over HRG, by explicitly reducing the region overlaps.  
Specifically, we introduce a new construction method to 
incrementally divide each saturated HR by removing the 
longest edge of a MST (Minimum Spanning Tree) 
representation of the internal objects.  This construction 
minimizes the overlap degree of the resultant HRs.  We also 
introduce a k-NN (k-Nearest-Neighbor) search scheme by 
automatically deciding the search radius to return the 
required number of nearest neighbors.  Our experimental 
results demonstrate that the overlap reduction facilitates the 
search for low and high dimensional data and achieves 
faster construction times.  Our proposed overlap reduction 
scheme can also be applied to other indexing structures to 
obtain faster search times in high dimensional datasets.  The 
rest of this paper is organized as follows.  Section 2 presents 
our proposed indexing structure in terms of construction and 
k-NN search.  Section 3 presents the experimental results to 
demonstrate the effectiveness of our approach.  Section 4 
concludes the paper. 
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2. THE PROPOSED INDEXING STRUCTURE 
 
We propose to build a special graph structure, MOBHRG, 
to facilitate high dimensional similarity queries in the metric 
space.  The objects in the database are stored in HRs.  
MOBHRG is a dynamic structure, capable of inserting new 
objects or deleting existing objects at any time with the 
minimum updating cost.  This dynamic construction ensures 
the minimum overlaps among HRs by removing the MST-
based longest edge when each HR reaches its full capacity.  
Our proposed MOBHRG improves the k-NN-based query 
performance since the overlap reduction leads to fewer 
regions as potential paths to be traversed when a query is 
issued.  In the following subsections, we explain the two 
major components in detail. 
 
2.1. The Construction of MOBHRG 
 
The basic idea of constructing MOBHRG is as follows:  
When inserting a new object x into MOBHRG, we identify 
an HR, which is the closest to x, to perform the update 
process.  If the HR is not saturated (i.e., the number of 
objects in HR, |HR|, is less than the highest capacity c) and 
the distance from x to the representative object (the center) 
aopt of the chosen HR is less than or equal to the radius of 
HR, we insert x into this HR.  If the HR is saturated and the 
distance from x to aopt is less than or equal to the radius of 
HR, we insert x into this HR and split the saturated HR into 
two HRs by removing the longest edge in the MST 
representation of the objects in the saturated HR.  The 
centers of the two split HRs are updated, respectively.  For 
the HR which contains multiple objects, we choose its 
center as the object that is closest to the centroid of the HR 
and its radius as the distance from the center to the farthest 
object in the HR.  For the HR which contains one object v2, 
we perform the range search using v2 as the center of a 
query to rebuild a HR to cover a set of objects around v2 
(i.e., calling LocalInsert function).  If the distance from x to 
aopt is larger than the radius of HR, we perform the range 
search using x as the query center to build a HR to cover a 
set of objects around x (i.e., calling LocalInsert function).  
This update process minimizes the number of vertices 
visited during the insertion.  Here, the feature vector of the 
original data set corresponds to the vertex in the graph.  Fig. 
1 shows the algorithmic view of building a MOBHRG. 

The algorithmic view of LocalInsert function is 
summarized in Fig. 2.  Here,  ranges from 0 to 1 and is a 
tolerance parameter to scale the estimated radius for the 
range query.  A large  leads to a high cost edge update and 
a small  leads to a more cost effective edge update with 
suboptimal graph structures.  By using the range query with 
distance r' as the radius, we obtain a set of vertices in the 
graph which are potentially neighbors to the new vertex c2.  
As a result, the algorithm only updates the neighborhood 
relationships of this set of vertices. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Algorithmic view of function buildMOBHRG. 
 
 

 
 
 
 
 
 
 
 

 
 

Fig. 2: Algorithmic view of function LocalInsert 
 

Fig. 3 illustrates the step-by-step construction of 
MOBHRG with a capacity c=4 for all HRs.  Each object 
(vertex) is labeled according to the insertion order while 
constructing MOBHRG.  Here, we mark the center of an 
HR using a large gray circle and mark the remaining 
vertices within an HR using smaller solid black circles.  The 
longest edge in MST is marked by a red line.  A bold black 
solid line is used to connect a pair of HRs. 

Function LocalInsert (Vertex c1, Vertex c2)
1. Find v1, which is the nearest vertex to c2 on the graph; 
2. Find v2, which is the farthest neighbor of v1; 
3. Set the radius r’ as  
          max{d(c1, c2), d(v1,c2)+d(v1, v2)}*(1+ )}; 
4. Perform the range query using c2 as the center of a query 

and r’ as the radius. 
5. Result = Range query results  c2; 
6. buildMOBHRG(Result); //here Result is a set of vertices

Function buildMOBHRG(objects in the database) 
1. Randomly choose the order of the objects in the 

database (i.e., the vertices in the graph) {A1, A2, .., An} 
for constructing the MOBHRG. 

2. Start with the first vertex A1.  Set the capacity of its HR 
(i.e., |HR(A1)|) to 1 and set A1 as the center of the HR.  

3. For each vertex x sequentially selected from {A2, ..,An}, 
perform the following operations: 
3.1. Find the center of each HR.  For each center a: 

1) Find its neighboring vertices N(a)={a1,…,ak}. 
2) Compute the traverse distance from the new 

vertex x to each vertex in N(a). 
3) Save the shortest traverse distance in d(a, x). 

3.2. Find HR(aopt), which has the shortest traverse 
distance to x, based on all the d(a, x)’s. 

3.3. If d(aopt, x) Radius(HR(aopt)) and |HR(aopt)| < c  
           HR(aopt) = HR(aopt)  x; 
     |HR(aopt)| = |HR(aopt)| + 1 ; 
        Save distance d(aopt, x); 

3.4. Elseif d(aopt, x)  Radius(HR(aopt)) and |HR(aopt)|= c
1) HR(aopt) = HR(aopt) x; 
2) Build the MST T using the vertices in HR(aopt) 
3) Remove the longest edge, which connects two 

vertices v1 and v2 in T, to obtain two HRs. 
Here, we denote v2 as the isolated vertex after 
the edge removal. 

4) Update the center of the current HR, where the 
new object x is added, as the vertex closest to 
the centroid of the HR.  Here we denote this 
center as ac and its HR as HR(ac). 

5) Call LocalInsert(ac, v2) to create the HR for v2.
3.5. Elseif d(aopt, x)>Radius(HR(aopt)) 

                   Call LocalInsert(aopt, x) to create the HR for x. 
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    (a)            (b)              (c)              (d)              (e) 
Fig. 3:  Illustration of step-by-step MOBHRG construction.  
(a) Insert 1, 2, 3, and 4 into HR(1). (b) Insert 5 into HR(1). 
(c) MST of internal vertices in HR(1). (d) Split HR(1) into 
HR(5) and HR(2). (e) Insert 6 into HR(2). 
 
2.2. The K-Nearest Neighbor Search 

A naïve approach in performing the k-NN search is a linear 
search process.  It is slow for a large scale database of high-
dimensional objects.  Therefore, we propose to minimize the 
number of distance computations by performing a few range 
queries with dynamically decreasing radii.  A range query is 
to retrieve the objects from the database that are at most at a 
radius r from the query object q.  Here, we aim to find the 
optimal radius r that covers the k nearest objects of q.  
Specifically, we reduce the search space by only visiting 
HRs that are close enough to q.  We first compute the 
distance between q and the center of each HR.  The 
distances from the vertices v’s within each HR to q are 
computed only when |d(q, center) – d(center, v)| < rangeK 
(i.e., d(q, v) < |d(q, center) – d(center, v)| < rangeK based 
on the triangular inequality), where rangeK is the search 
radius of q and is initialized as positive infinitive.  A new 
search radius rangeK is dynamically reduced based on two 
factors: the minimum distance of all d(q, v)’s and the 
current rangeK.  If more than k objects are returned by 
performing the range search with a radius of rangeK, we 
recursively repeat the process until rangeK is small enough 
to find k nearest neighbors.  Fig. 4 summarizes the 
algorithmic flow of our proposed k-NN search.   

Fig. 5 demonstrates the search paths, shown in orange 
color, to find 3 nearest neighbors using SA-tree, RNG, and 
MOBHRG, respectively.  It clearly shows that our proposed 
indexing scheme computes fewer distances due to its more 
compact representation and non-hierarchical structures. 

 

     
Fig. 5: Comparison of a k-NN (k=3) query in three indexing 
structures. Left: SA-tree; Middle: RNG; Right: MOBHRG. 

 
3. EXPERIMENTAL RESULTS 

We compared the proposed MOBHRG indexing technique 
with SA-tree [6], M-tree [1], and HRG [8] in terms of the 
construction time, the k-NN query response time, and the 
overlap degree using two real and two synthetic datasets.  
One real dataset consists of 6,000 214-D objects (features) 
obtained from the COREL image database and the other real 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4: Algorithmic view of function KnnSearch. 

 

dataset consists of 6,000 36-D objects obtained from the 
COREL image database.  One synthetic dataset consists of 
1,500 16-D vectors normally distributed in 10 clusters with 
the standard deviation of 0.1 within a unit hypercube.  The 
other synthetic dataset contains 1,000 2-D vectors normally 
distributed in 10 clusters with the standard deviation of 0.1 
within a unit square. 

Fig. 6 compares the construction time of four structures 
by incrementally adding objects from four datasets, 
respectively.  The K(%) on the x-axis indicates the 
percentage of all the objects in each dataset is added during 
the construction.  It shows that SA-tree always takes less 
construction time than MOBHRG for high dimensional data 
due to more edges involved in MOBHRG.  MBOHRG 
always takes less construction time than M-tree since its 
overlap reduction scheme can quickly locate the region to 
be updated.  MBOHRG also takes more construction time 
than HRG in the 216-D dataset mainly due to the overlap 
reduction process. 

Fig. 7 compares the query response time of four 
techniques on four datasets with different k’s.  The K(%) on 
the x-axis indicates the percentage (5% to 100%) of the total 
number of objects in each dataset, that is used as k.  We 
randomly choose all the objects in each dataset as a query to 
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Function KnnSearch(Vertex query, int k, graph MOBHRG,
float rangeK)
1. Compute the distance from query to the representative

object (i.e., the center) of each HR in the MOBHRG 
2. Order the HRs {HR1, …, HRn} in the ascending order. 
3. For each HR, find all the vertices v’s within the HR,

that satisfy the following condition: 
          |d(query, center) – d(center, v)|  rangeK 

where rangeK denotes the search radius of query and is
specified as a parameter of KnnSearch function,  center
represents the center of the HR holding v, d(query,
center) is computed from step 1, and d(center, v) is
computed during the MOBHRG construction. 

4. For each vertex v found in step 3, compute the distance
from query to v, d(query, v).   

5. Set min_dist as the minimum value of all the d(query,
v)’s found in step 4). 

6. Update the search radius of query by: 
rangeK = min(min_dist, RangeK) ; 

7. Keep the vertices sv’s that satisfy the following
condition: d(query, sv)  min_dist + 2×rangeK. 

8. If the number of vertices sv’s (i.e, |sv|) is larger than k,  
8.1. Reduce the graph structure to G1 using all the

vertices sv’s found in step 7. 
8.2. Call KnnSearch(query, k, G1, rangeK) 

9. Elseif |sv|  k, 
9.1. Order sv’s in an ascending order based on

d(query, sv). 
9.2. Return top k sv’s as the search results. 
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perform k-NN search.  The y-axis shows the average query 
response time.  It shows our structure achieves the fastest 
response time for two real datasets.  It performs better than 
two tree-based techniques and achieves comparable 
performance as HRG for two synthetic datasets.  This is 
mainly because the longest edge of the MST often is the 
farthest objects in the HR in lower dimensions. 
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   (a) Synthetic 2-D database      (b) Synthetic 16-D database 
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   (c) Real 36-D database           (d) Real 214-D database 
Fig. 6: Comparison of indexing structure construction time. 
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   (a) Synthetic 2-D database      (b) Synthetic 16-D database 
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   (c) Real 36-D database           (d) Real 214-D database 

Fig. 7: Comparison of query response time. 
Fig. 8 compares the overlap degree of HRG and 

MOBHRG in terms of the number of separated regions.  We 
quantify the overlap degree between two HRs, O(HR1, 
HR2), as the ratio of the distance of their centers to the sum 
of their radius.  Two HRs do not overlap if O(HR1, HR2)>1.  
The total overlap degree is computed as the sum of overlap 
degree between all pairs of HRs normalized by the total 
number of HRs.  It measures the overall number of separate 
regions in each structure.  Higher value means fewer 
overlapped regions.  It shows our structure results in more 
separate regions, especially for higher dimensional datasets. 
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Fig. 8: Comparison of the overlap degree. 

We also computed the query accuracy of our indexing 
structure using the linear search results as the ground truth.  
Our structure achieves 100% accuracy for both synthetic 
datasets.  For top 20 and top 25 returns (k=20 and 25), the 
query accuracy for real 36-D dataset is 92.95% and 92.65% 
and the query accuracy for real 214-D dataset is 100% and 
99.98%, respectively.  The search time is around 50%, 40%, 
50%, and 70% of the linear search time for synthetic 2-D, 
synthetic 16-D, real 36-D, and real 214-D, respectively. 

 
4. CONCLUSIONS 

 
We propose a new graph-based data structure to index 
objects in the metric space by reducing the overlaps among 
HRs.  Specifically, we introduce a new construction method 
to incrementally divide each saturated HR by removing the 
longest edge of a MST representation of the internal objects.  
We also introduce a k-NN search scheme by automatically 
deciding the search radius to return the required number of 
nearest neighbors.  Our experimental results demonstrate 
that our structure facilitates the search for low and high 
dimensional data and achieves faster construction times. 
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