
MOBHRG: FAST K-NEAREST-NEIGHBOR SEARCH BY OVERLAP REDUCTION OF
HYPERSPHERICAL REGIONS

Omar U. Floreza, Xiaojun Qia, and Alexander Ocsab

Omar.Florez@usu.edu, Xiaojun.Qi@usu.edu, and aocsa@ieee.org

aComputer Science Department, Utah State University, Logan, UT 84322-4205
bComputer Science Department, San Agustin University, Arequipa, Peru

ABSTRACT

We propose a minimum overlap based hyperspherical
region graph indexing structure to achieve fast similarity-
based queries for both low and high dimensional datasets.
Specifically, we reduce the region overlaps in the graph
construction phase by incrementally dividing each saturated
hyperspherical region and removing the longest edge of a
minimum spanning tree representation of the internal
objects. This overlap reduction scheme creates more
separated regions, so fewer regions as potential paths are
traversed when a query is issued. We also introduce a k-
nearest-neighbor search scheme by automatically deciding
the search radius to return the required number of nearest
neighbors. Our extensive experimental results show the
effectiveness of the proposed indexing structure compared
with other tree and graph based indexing structures.

Index Terms— Hyperspherical region graph, minimum
spanning tree, overlap reduction, k-nearest-neighbor search.

1. INTRODUCTION

Searching desired information from a large-scale database
plays an important role in daily activities. Indexing
techniques are viable solutions to speed-up the search
operations. Various data structures have been proposed to
index vector representations of objects in the Euclidean
space. However, the metric space is more common when
the objects are images, videos, CAD drawings, XML data,
DNA sequences, or time series. Therefore, the research
trend is to develop efficient indexing techniques for high-
dimensional metric data, where the distance function varies
with the data types. However, this is a challenging task
mainly due to the following factors: 1) Distance functions
for high dimensional data are expensive. 2) The search
space tends to be more uniform in terms of the density when
the dimension increases. 3) It is more difficult to prune data
during the search process. Here, we briefly review several
representative indexing techniques.

Tree-based metric indexing structures, including M-tree
[1], Slim-tree [2], DF-Tree [3], PM-Tree [4], and DBM-

Tree [5], are based on regions of fixed sizes. They directly
implement each region as a page in the secondary storage.
They are proven to be suitable for low and medium
dimensional datasets. However, high dimensionality makes
most regions overlap with each other. Therefore, the
similarity search algorithms need to consider more regions
as potential paths to be traversed when a query is issued.
SA-Tree [6] is a tree-based indexing structure that does not
use fixed-size regions. It approximates the Voronoi
representation of the database objects through distance-
based hierarchical relationships. It has shown fast response
times for high dimensional datasets. Graph-based metric
indexing structures, such as RNG (Relative Neighborhood
Graph) [7] and HRG (Hyperspherical Region Graph) [8],
reduce the overlap between regions using the proximity
between objects. They implement each HR (Hyperspherical
Region) to ensure that two adjacent objects are neighbors in
the region only if there is not any other object in their
neighborhood. The HRG indexing structure further makes
the representative objects as vertices and region centers to
facilitate the search process.

In this paper, we present MOBHRG (Minimum
Overlap Based HRG) indexing structure, an improvement
over HRG, by explicitly reducing the region overlaps.
Specifically, we introduce a new construction method to
incrementally divide each saturated HR by removing the
longest edge of a MST (Minimum Spanning Tree)
representation of the internal objects. This construction
minimizes the overlap degree of the resultant HRs. We also
introduce a k-NN (k-Nearest-Neighbor) search scheme by
automatically deciding the search radius to return the
required number of nearest neighbors. Our experimental
results demonstrate that the overlap reduction facilitates the
search for low and high dimensional data and achieves
faster construction times. Our proposed overlap reduction
scheme can also be applied to other indexing structures to
obtain faster search times in high dimensional datasets. The
rest of this paper is organized as follows. Section 2 presents
our proposed indexing structure in terms of construction and
k-NN search. Section 3 presents the experimental results to
demonstrate the effectiveness of our approach. Section 4
concludes the paper.

1133978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

2. THE PROPOSED INDEXING STRUCTURE

We propose to build a special graph structure, MOBHRG,
to facilitate high dimensional similarity queries in the metric
space. The objects in the database are stored in HRs.
MOBHRG is a dynamic structure, capable of inserting new
objects or deleting existing objects at any time with the
minimum updating cost. This dynamic construction ensures
the minimum overlaps among HRs by removing the MST-
based longest edge when each HR reaches its full capacity.
Our proposed MOBHRG improves the k-NN-based query
performance since the overlap reduction leads to fewer
regions as potential paths to be traversed when a query is
issued. In the following subsections, we explain the two
major components in detail.

2.1. The Construction of MOBHRG

The basic idea of constructing MOBHRG is as follows:
When inserting a new object x into MOBHRG, we identify
an HR, which is the closest to x, to perform the update
process. If the HR is not saturated (i.e., the number of
objects in HR, |HR|, is less than the highest capacity c) and
the distance from x to the representative object (the center)
aopt of the chosen HR is less than or equal to the radius of
HR, we insert x into this HR. If the HR is saturated and the
distance from x to aopt is less than or equal to the radius of
HR, we insert x into this HR and split the saturated HR into
two HRs by removing the longest edge in the MST
representation of the objects in the saturated HR. The
centers of the two split HRs are updated, respectively. For
the HR which contains multiple objects, we choose its
center as the object that is closest to the centroid of the HR
and its radius as the distance from the center to the farthest
object in the HR. For the HR which contains one object v2,
we perform the range search using v2 as the center of a
query to rebuild a HR to cover a set of objects around v2
(i.e., calling LocalInsert function). If the distance from x to
aopt is larger than the radius of HR, we perform the range
search using x as the query center to build a HR to cover a
set of objects around x (i.e., calling LocalInsert function).
This update process minimizes the number of vertices
visited during the insertion. Here, the feature vector of the
original data set corresponds to the vertex in the graph. Fig.
1 shows the algorithmic view of building a MOBHRG.

The algorithmic view of LocalInsert function is
summarized in Fig. 2. Here, ranges from 0 to 1 and is a
tolerance parameter to scale the estimated radius for the
range query. A large leads to a high cost edge update and
a small leads to a more cost effective edge update with
suboptimal graph structures. By using the range query with
distance r' as the radius, we obtain a set of vertices in the
graph which are potentially neighbors to the new vertex c2.
As a result, the algorithm only updates the neighborhood
relationships of this set of vertices.

Fig. 1: Algorithmic view of function buildMOBHRG.

Fig. 2: Algorithmic view of function LocalInsert

Fig. 3 illustrates the step-by-step construction of
MOBHRG with a capacity c=4 for all HRs. Each object
(vertex) is labeled according to the insertion order while
constructing MOBHRG. Here, we mark the center of an
HR using a large gray circle and mark the remaining
vertices within an HR using smaller solid black circles. The
longest edge in MST is marked by a red line. A bold black
solid line is used to connect a pair of HRs.

Function LocalInsert (Vertex c1, Vertex c2)
1. Find v1, which is the nearest vertex to c2 on the graph;
2. Find v2, which is the farthest neighbor of v1;
3. Set the radius r’ as
 max{d(c1, c2), d(v1,c2)+d(v1, v2)}*(1+)};
4. Perform the range query using c2 as the center of a query

and r’ as the radius.
5. Result = Range query results c2;
6. buildMOBHRG(Result); //here Result is a set of vertices

Function buildMOBHRG(objects in the database)
1. Randomly choose the order of the objects in the

database (i.e., the vertices in the graph) {A1, A2, .., An}
for constructing the MOBHRG.

2. Start with the first vertex A1. Set the capacity of its HR
(i.e., |HR(A1)|) to 1 and set A1 as the center of the HR.

3. For each vertex x sequentially selected from {A2, ..,An},
perform the following operations:
3.1. Find the center of each HR. For each center a:

1) Find its neighboring vertices N(a)={a1,…,ak}.
2) Compute the traverse distance from the new

vertex x to each vertex in N(a).
3) Save the shortest traverse distance in d(a, x).

3.2. Find HR(aopt), which has the shortest traverse
distance to x, based on all the d(a, x)’s.

3.3. If d(aopt, x) Radius(HR(aopt)) and |HR(aopt)| < c
 HR(aopt) = HR(aopt) x;
 |HR(aopt)| = |HR(aopt)| + 1 ;
 Save distance d(aopt, x);

3.4. Elseif d(aopt, x) Radius(HR(aopt)) and |HR(aopt)|= c
1) HR(aopt) = HR(aopt) x;
2) Build the MST T using the vertices in HR(aopt)
3) Remove the longest edge, which connects two

vertices v1 and v2 in T, to obtain two HRs.
Here, we denote v2 as the isolated vertex after
the edge removal.

4) Update the center of the current HR, where the
new object x is added, as the vertex closest to
the centroid of the HR. Here we denote this
center as ac and its HR as HR(ac).

5) Call LocalInsert(ac, v2) to create the HR for v2.
3.5. Elseif d(aopt, x)>Radius(HR(aopt))

 Call LocalInsert(aopt, x) to create the HR for x.

1134

 (a) (b) (c) (d) (e)
Fig. 3: Illustration of step-by-step MOBHRG construction.
(a) Insert 1, 2, 3, and 4 into HR(1). (b) Insert 5 into HR(1).
(c) MST of internal vertices in HR(1). (d) Split HR(1) into
HR(5) and HR(2). (e) Insert 6 into HR(2).

2.2. The K-Nearest Neighbor Search

A naïve approach in performing the k-NN search is a linear
search process. It is slow for a large scale database of high-
dimensional objects. Therefore, we propose to minimize the
number of distance computations by performing a few range
queries with dynamically decreasing radii. A range query is
to retrieve the objects from the database that are at most at a
radius r from the query object q. Here, we aim to find the
optimal radius r that covers the k nearest objects of q.
Specifically, we reduce the search space by only visiting
HRs that are close enough to q. We first compute the
distance between q and the center of each HR. The
distances from the vertices v’s within each HR to q are
computed only when |d(q, center) – d(center, v)| < rangeK
(i.e., d(q, v) < |d(q, center) – d(center, v)| < rangeK based
on the triangular inequality), where rangeK is the search
radius of q and is initialized as positive infinitive. A new
search radius rangeK is dynamically reduced based on two
factors: the minimum distance of all d(q, v)’s and the
current rangeK. If more than k objects are returned by
performing the range search with a radius of rangeK, we
recursively repeat the process until rangeK is small enough
to find k nearest neighbors. Fig. 4 summarizes the
algorithmic flow of our proposed k-NN search.

Fig. 5 demonstrates the search paths, shown in orange
color, to find 3 nearest neighbors using SA-tree, RNG, and
MOBHRG, respectively. It clearly shows that our proposed
indexing scheme computes fewer distances due to its more
compact representation and non-hierarchical structures.

Fig. 5: Comparison of a k-NN (k=3) query in three indexing
structures. Left: SA-tree; Middle: RNG; Right: MOBHRG.

3. EXPERIMENTAL RESULTS

We compared the proposed MOBHRG indexing technique
with SA-tree [6], M-tree [1], and HRG [8] in terms of the
construction time, the k-NN query response time, and the
overlap degree using two real and two synthetic datasets.
One real dataset consists of 6,000 214-D objects (features)
obtained from the COREL image database and the other real

Fig. 4: Algorithmic view of function KnnSearch.

dataset consists of 6,000 36-D objects obtained from the
COREL image database. One synthetic dataset consists of
1,500 16-D vectors normally distributed in 10 clusters with
the standard deviation of 0.1 within a unit hypercube. The
other synthetic dataset contains 1,000 2-D vectors normally
distributed in 10 clusters with the standard deviation of 0.1
within a unit square.

Fig. 6 compares the construction time of four structures
by incrementally adding objects from four datasets,
respectively. The K(%) on the x-axis indicates the
percentage of all the objects in each dataset is added during
the construction. It shows that SA-tree always takes less
construction time than MOBHRG for high dimensional data
due to more edges involved in MOBHRG. MBOHRG
always takes less construction time than M-tree since its
overlap reduction scheme can quickly locate the region to
be updated. MBOHRG also takes more construction time
than HRG in the 216-D dataset mainly due to the overlap
reduction process.

Fig. 7 compares the query response time of four
techniques on four datasets with different k’s. The K(%) on
the x-axis indicates the percentage (5% to 100%) of the total
number of objects in each dataset, that is used as k. We
randomly choose all the objects in each dataset as a query to

1 2 3
4 6

1 2 3
4

5
1 2 3

4

5 1 2 3
4

5
1 23

4

5

Function KnnSearch(Vertex query, int k, graph MOBHRG,
float rangeK)
1. Compute the distance from query to the representative

object (i.e., the center) of each HR in the MOBHRG
2. Order the HRs {HR1, …, HRn} in the ascending order.
3. For each HR, find all the vertices v’s within the HR,

that satisfy the following condition:
 |d(query, center) – d(center, v)| rangeK

where rangeK denotes the search radius of query and is
specified as a parameter of KnnSearch function, center
represents the center of the HR holding v, d(query,
center) is computed from step 1, and d(center, v) is
computed during the MOBHRG construction.

4. For each vertex v found in step 3, compute the distance
from query to v, d(query, v).

5. Set min_dist as the minimum value of all the d(query,
v)’s found in step 4).

6. Update the search radius of query by:
rangeK = min(min_dist, RangeK) ;

7. Keep the vertices sv’s that satisfy the following
condition: d(query, sv) min_dist + 2×rangeK.

8. If the number of vertices sv’s (i.e, |sv|) is larger than k,
8.1. Reduce the graph structure to G1 using all the

vertices sv’s found in step 7.
8.2. Call KnnSearch(query, k, G1, rangeK)

9. Elseif |sv| k,
9.1. Order sv’s in an ascending order based on

d(query, sv).
9.2. Return top k sv’s as the search results.

1135

perform k-NN search. The y-axis shows the average query
response time. It shows our structure achieves the fastest
response time for two real datasets. It performs better than
two tree-based techniques and achieves comparable
performance as HRG for two synthetic datasets. This is
mainly because the longest edge of the MST often is the
farthest objects in the HR in lower dimensions.

0 20 40 60 80 100
0

50

100

150

200

250

300

K (%)

S
ec

on
ds

MOBHRG
HRG
M−tree
SA−tree

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

K (%)

S
ec

on
ds

MOBHRG
HRG
M−tree
SA−tree

 (a) Synthetic 2-D database (b) Synthetic 16-D database

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

K (%)

S
ec

on
ds

MOBHRG
HRG
M−tree
SA−tree

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

K (%)

S
ec

on
ds

MOBHRG
HRG
M−tree
SA−tree

 (c) Real 36-D database (d) Real 214-D database
Fig. 6: Comparison of indexing structure construction time.

0 20 40 60 80 100
0

100

200

300

400

500

600

700

K (%)

M
ill

is
ec

on
ds

MOBHRG
HRG
M−tree
SA−tree

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

K (%)

M
ill

is
ec

on
ds

MOBHRG
HRG
M−tree
SA−tree

 (a) Synthetic 2-D database (b) Synthetic 16-D database

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

K (%)

M
ill

is
ec

on
ds

MOBHRG
HRG
M−tree
SA−tree

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

K (%)

M
ill

is
ec

on
ds

MOBHRG
HRG
M−tree
SA−tree

 (c) Real 36-D database (d) Real 214-D database

Fig. 7: Comparison of query response time.
Fig. 8 compares the overlap degree of HRG and

MOBHRG in terms of the number of separated regions. We
quantify the overlap degree between two HRs, O(HR1,
HR2), as the ratio of the distance of their centers to the sum
of their radius. Two HRs do not overlap if O(HR1, HR2)>1.
The total overlap degree is computed as the sum of overlap
degree between all pairs of HRs normalized by the total
number of HRs. It measures the overall number of separate
regions in each structure. Higher value means fewer
overlapped regions. It shows our structure results in more
separate regions, especially for higher dimensional datasets.

Synthentic2D Synthentic16D Real36D Real214D
0

20

40

60

80

100

120

140

Data Set

N
um

be
r o

f S
ep

ar
at

ed
 R

eg
io

ns

MOBHRG
HRG

Fig. 8: Comparison of the overlap degree.

We also computed the query accuracy of our indexing
structure using the linear search results as the ground truth.
Our structure achieves 100% accuracy for both synthetic
datasets. For top 20 and top 25 returns (k=20 and 25), the
query accuracy for real 36-D dataset is 92.95% and 92.65%
and the query accuracy for real 214-D dataset is 100% and
99.98%, respectively. The search time is around 50%, 40%,
50%, and 70% of the linear search time for synthetic 2-D,
synthetic 16-D, real 36-D, and real 214-D, respectively.

4. CONCLUSIONS

We propose a new graph-based data structure to index
objects in the metric space by reducing the overlaps among
HRs. Specifically, we introduce a new construction method
to incrementally divide each saturated HR by removing the
longest edge of a MST representation of the internal objects.
We also introduce a k-NN search scheme by automatically
deciding the search radius to return the required number of
nearest neighbors. Our experimental results demonstrate
that our structure facilitates the search for low and high
dimensional data and achieves faster construction times.

5. REFERENCES

[1] P. Ciaccia, M. Patella, and P. Zezula, “M-Tree: An Efficient
Access Method for Similarity Search in Metric Spaces,” Proc. of
Int. Conf. on Very Large Data Bases, pp. 426 435, 1997.
[2] C. Traina, A. Traina, B. Seeger, and C. Faloutsos, “Slim-Trees:
High Performance Metric Trees Minimizing Overlap Between
Nodes,” EDBT, Vol. 1777, pp. 51 65, 2000.
[3] J. C. Traina, A. Traina, R. S. Filho, and C. Faloutsos, “How to
Improve the Pruning Ability of Dynamic Metric Access Methods,”
Proc. of the 11th Int. Conf. on IKM, pp. 219 226, 2002.
[4] T. Skopal, J. Pokorn, and V. Snasel, “PM-Tree: Pivoting
Metric Tree for Similarity Search in Multimedia Databases,”
Advances in Databases and Information Systems (ADBIS), 2004.
[5] M. R. Vieira, C. T. Jr., F. J. T. Chino, and A. J. M. Traina,
“Dbm-Tree: A Dynamic Metric Access Method Sensitive to Local
Density Data,” Brazilian Symposium on Databases (SBBD), pp.
163 177, 2004.
[6] G. Navarro, “Searching in Metric Spaces by Spatial
Approximation,” The VLDB Journal, Vol. 11, pp. 28 46, 2002.
[7] J. Jaromczyk and G. Toussaint, “Relative Neighborhood
Graphs and Their Relatives,” Proc. of IEEE, Vol. 80, pp.
1502 1517, 1992.
[8] O. U. Florez and S. Lim, “HRG: A Graph Structure for Fast
Similarity Search in Metric Spaces,” Proc. of the 19th Int. Conf. on
Database and Expert Systems Applications, pp. 73 81, 2008.

1136

