
DYNAMIC UPDATING AND DOWNDATING MATRIX SVD AND TENSOR HOSVD FOR
ADAPTIVE INDEXING AND RETRIEVAL OF MOTION TRAJECTORIES

Xiang Ma, Dan Schonfeld and Ashfaq Khokhar

Department of Electrical and Computer Engineering, University of Illinois at Chicago,
851 S Morgan St, Chicago, IL 60607, U.S.A.

ABSTRACT

Motion information is regarded as one of the most important
cues for developing semantics in video data. Yet it is ex-
tremely challenging to build indexing and browsing tools for
video data, particularly when it involves interactive motions
of multiple objects. The problem is further complicated when
the video archives are dynamically updated, and/or queries
contains partial information. An efficient solution would
require that the feature space used to represent the data be
dynamically updated or downdated to allow frequent addi-
tions/deletions and matching of queries. Assuming Tensor
HOSVD as the feature space, in this paper, we propose two
novel algorithms, namely, Dynamic Tensor HOSVD Updat-
ing Algorithm (DTSV D+) and Dynamic Tensor HOSVD
Downdating Algorithm (DTSV D−), for dynamically up-
dating and downdating existing tensor HOSVD, without
recalculating it from the raw data. The proposed algorithms
are robustly applied to both full and partial multiple motion
trajectories events with varying number of objects, trajectory
lengths, and sampling rates. Simulations on real-world mul-
tiple motion trajectories data demonstrate the robustness and
accuracy of the proposed algorithms.

Index Terms— Video retrieval, Motion trajectory analy-
sis, Singular value decomposition, Multilinear algebra.

1. INTRODUCTION

Analysis of multiple motion trajectories has become an in-
tensive area of research recently, due to its wide application
in many areas in computer vision, such as activity recogni-
tion and video content analysis. However, the issues related
to indexing and retrieval of video events with multiple motion
trajectories are extremely challenging and have not yet been
thoroughly addressed in the existing research work. Specif-
ically, the practical utility of a robust indexing and retrieval
system of multiple interacting motion trajectories must ad-
dress three fundamental problems: (i) dynamic addition and
deletion of entries in motion trajectory databases, (ii) dynamic
matching of query and database entries when for a given mo-
tion event the number of trajectories in the query do not match

This work is funded in part of funding from NSF IIS-0534438.

with the corresponding event stored in the database, (iii) dy-
namic matching of query and database entries when the tem-
poral length of the trajectories in the query event differ from
the length of the trajectories in the corresponding event in the
database. In our previous work [1], we presented a novel in-
dexing and retrieval framework for compact and integrated
representation of multiple interacting motion trajectories. Our
key contribution was the formation of three new multi-linear
algebraic structures –HOSVD being one of them– for com-
pact and unified representation of events with multiple object
trajectories in a reduced-dimension space. Three efficient al-
gorithms for the indexing of multiple object trajectories cor-
responding to each of the algebraic structures based repre-
sentations were proposed. For more details, please refer to
[1]. However, this work did not consider dynamic updates
and partial queries.
Also, most of the existing matrix SVD updating algo-

rithms rely on the R-SVD algorithm [2]. However, it re-
quires that the width of the matrix must be larger or equal to
its height, which limits its applicability to arbitrary matrices.
We extend these results by developing updating and down-
dating algorithms of SVD representation for arbitrary matri-
ces. We subsequently rely on these methods as the foundation
for developing new updating and downdating algorithms of
HOSVD tensors.

2. MATRIX SVD AND TENSOR HOSVD

The classical matrix singular value decomposition (SVD) is
a decomposition of the matrix A as product of singular value
matrix and singular vector matrices.

A = U × Σ × V T . (1)

where in the above equation, U and V are left and right singu-
lar vector matrices, whose columns are left and right singular
vectors of matrix A, while Σ is a diagonal matrix whose en-
tries are eigen values of matrix A.
The tensor HOSVD, or higher-order SVD (HOSVD) [3]

is a generalization of the classical matrix SVD to higher-order
tensors. An N -th order tensor A is an N -dimensional matrix
composed of N vector spaces. The tensor SVD, or HOSVD
is aiming of find N orthonormal base matrices, also called

1129978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

mode matrices, U (1), ..., U (n), ..., U (N) which span these N
spaces, respectively.
The tensor HOSVD is a decomposition of the tensorA as

product of a core tensor and those bases matrices,

A = B ×1 U (1) ×2 U (2) ×3 U (3)... ×N U (N). (2)

where in the above equation, B is a core tensor that controls
the interactions among the mode matricesU (1), ..., U (n), ..., U (N).
The core tensor can be obtained by

B = A×1 U (1)T ×2 U (2)T

... ×N U (N)T

. (3)

The HOSVD of a tensor is calculated by performing a
matrix SVD on the unfolded matrix of tensor, which enables
us to dynamically update or downdate the HOSVD of a tensor
when arbitrary entries are added or deleted.

3. DYNAMIC UPDATING AND DOWNDATING OF
MATRIX SVD AND TENSOR HOSVD

Given a three-dimensional tensorA consisting of multiple tra-
jectories, for example, of size I ×J ×K. There are K entries
of multiple trajectory data, each entry consists of J motion tra-
jectories, and each trajectory is of length I, as shown in Fig 1.
The Tensor HOSVD of the tensor A is

A = B × U (1) × U (2) × ... × U (N). (4)

where tensor B is the core tensor, and U (i), i = 1, 2, ..., N
are the loading matrices. Inside the tensor A, there is another
tensor A′, of size I ′ × J ′ × K ′; in other words, tensor A′

contains data the same as portion of tensor A. The Tensor
HOSVD of tensor A′ is

A′ = B∗ × U (1)∗ × U (2)∗ × ... × U (N)∗. (5)

The tensor HOSVD downdating problem arises when we
know the Tensor HOSVD of the tensor A and want to know
the Tensor SVD of the tensor A′. And when we know the
Tensor HOSVD of the smaller one, e.g. A′, and we want to
know the Tensor HOSVD of the one after more entries added,
e.g. A, that is called tensor HOSVD updating.
Figure. 1 demonstrate the structural relationship of ten-

sor A (white) of size I × J × K and tensor A′ (red) of size
I ′ × J ′ × K ′, where I ′ ≤ I , J ′ ≤ J and K ′ ≤ K. We can
view tensorA′ is a portion of tensorA, where the former con-
sists portion of the same data from the letter. The unfolded
matrices are also depicted to further clarify the relationship
of data in tensor A and in tensor A′. Let the left up corner
of tensor A be the origin of a three-dimensional coordinate
system (X, Y, Z), and the left up corner of tensor A′ be at
position (x, y, z), then if we know the position (x, y, z) and
sizes of the tensor A, i.e. I, J,K and sizes of the tensor A′,
i.e. I ′, J ′andK ′, then we can estimate the Tensor HOSVD of
one tensor if we know the Tensor HOSVD of the other, these

Fig. 1. Dynamic updating and downdating of Tensor HOSVD

are the tensor HOSVD updating and tensor HOSVD downdat-
ing problems.
Traditionally, if we want to determine the Tensor HOSVD

of the updated or downdated tensor, we need to follow a te-
dious procedure to recalculate the Tensor HOSVD from the
updated raw data. Here, we propose two novel algorithms for
dynamic updating and downdating of tensor HOSVDs, which
adaptively calculate the new Tensor HOSVD based on exist-
ing Tensor HOSVD of the previous data.

3.1. Dynamic Tensor HOSVD Updating Algorithm

We utilize the proposed matrix SVD updating algorithm,
namely SV D+, which consists of two algorithms: SV D+C ,
to update the matrix SVD when arbitrary columns are added;
and SV D+R, to update the matrix SVD when arbitrary rows
are added. The combination of SV D+C and SV D+R algo-
rithms is used to dynamically update the SVD of a matrix
when arbitrary entries are added. This can be done first by
locating the positions of entries that are to be added and then
performing a two step dynamic updating of matrix SVD,
either by applying SV D+C followed by SV D+R, or by
applying SV D+R followed by SV D+C . Due to space lim-
itations, these algorithms are not listed here, and will be
presented in a detailed version of this work some where else.

3.2. Dynamic Tensor HOSVD Downdating Algorithm

In this subsection, we propose a novel dynamic tensor
HOSVD downdating algorithm (DTSV D−) which solves
the problem of estimating Tensor HOSVD of a tensor when
entries are deleted, or searching for a specific location of a
partial tensor. In ourDTSV D− algorithm, we utilize a novel
SV D−, which consists of two algorithms, namely, SV D−C

and SV D−R. The combination of SV D−C and SV D−R

algorithms is used to dynamically downdating the SVD of a
matrix when arbitrary entries are deleted. This can be done by
firstly locating the positions of entries that are to be kept and
then performing a two step dynamic downdating of matrix

1130

Algorithm 1 Dynamic tensor HOSVD updating algo-
rithm DTSV D+; [B∗, U (1)∗, U (2)∗, U (3)∗, ..., U (N)∗] =
DTSV D+[B, U (1), U (2), U (3), ..., U (N), {x, y, z}x∈X,y∈Y,z∈Z]
Input: HOSVD of original tensor A i.e.

{B, U (1), U (2), ..., U (N)} and positions of entries
that need to be added {x, y, z}x∈X,y∈Y,z∈Z .

Output: HOSVD of updated tensor A∗, i.e.
{B∗, U (1)∗, U (2)∗, ..., U (N)∗}.

1. for n=1:N,
2. Compute the mode-n unfolding matrix A(n) of tensorA,
such that T (n) = Un × Σn × Vn.

3. Update the HOSVD of T (n) using SV D+ algorithm.
[U∗

n, Σ∗
n, V ∗

n] = SV D+[Un, Σn, Vn, {Kj}], where {Kj}
is decided by {x, y, z}x∈X,y∈Y,z∈Z (e.g., as shown in
Figure 1 for three dimensional tensor).

4. end.
5. Set the mode-n loading matrix U (n)∗ of the downdated
tensor A∗ as the left singular vector matrix U∗

n of the
mode-n unfolding matrix.

6. The updated core tensor B∗ of the updated tensor A∗

can be calculated as B∗ = T ∗ ×1 U (1)∗ ×2 U (2)∗ ×3

U (3)∗... ×N U (N)∗.

SVD, either first applying SV D−C then applying SV D−R,
or vice versa.

4. EXPERIMENTAL RESULTS

We test the effectiveness of the proposed algorithms in an in-
dexing and retrieval framework where video events consisting
of multiple motion trajectories are stored and querried in a
query-by-example paradigm. The experiments are performed
using Matlab on a 2.0 GHz Pentium Dual Core Laptop with
2GB memories, without code optimization.
The accuracy of ourDTSV D− applied to high-dimensional

tensor is shown in the following experiment. A three dimen-
sional tensor of size 20 × 15 × 10 is randomly generated, as
shown in Figure 2 (a). The Tensor HOSVD of A is shown
in Figures 2 (b)-(e). We extract a new tensor A∗ from A, of
size 7 × 10 × 5, as shown in Figure 2 (f)(the relative posi-
tion of A∗ in A is highlighted in yellow). Given the tensor
HOSVD of A, we estimate the tensor HOSVD of A∗, using
our DTSV D− algorithm, which prevents the re-calculating
of tensor HOSVD. The tensor HOSVD of A∗ are depicted
in Figures 2 (g)-(j). The estimation results are shown in Ta-
ble 1. The true values are obtained by direct Tensor SVD
calculation while the estimated values are acquired using
our DTSV D− algorithm. We can see that the estimation
errors are at machine precision level thus are actually zeros.
For multiple motion trajectory retrieval, figure 3 (a) shows
a 2-traj query, figures 3(b)-(c) show the retrieved top two
most-similar 3-trajectory entries; while figure 3(d) depicts
another query of temporal length 300 sec., and figure 3(e)-(f)
show the retrieved top two most-similar entries. We can see

Algorithm 2 Dynamic tensor HOSVD downdating algo-
rithm DTSV D−; [B∗, U (1)∗, U (2)∗, U (3)∗, ..., U (N)∗] =
DTSV D−[B, U (1), U (2), U (3), ..., U (N), {x, y, z}x∈X,y∈Y,z∈Z]
Input: HOSVD of original tensor A i.e.

{B, U (1), U (2), ..., U (N)} and positions of entries
that need to be kept {x, y, z}x∈X,y∈Y,z∈Z .

Output: HOSVD of downdated tensor A∗, i.e.
{B∗, U (1)∗, U (2)∗, ..., U (N)∗}.

1. for n=1:N,
2. Compute the mode-n unfolding matrix A(n) of tensorA,
such that A(n) = Un × Σn × Vn.

3. Downdate the HOSVD of A(n) using SV D− algorithm.
[U∗

n, Σ∗
n, V ∗

n] = SV D−[Un, Σn, Vn, {Kj}], where {Kj}
is decided by {x, y, z}x∈X,y∈Y,z∈Z (e.g., as shown in
Figure 1 for three dimensional tensor)

4. end.
5. Set the mode-n loading matrix U (n)∗ of the downdated
tensor A∗ as the left singular vector matrix U∗

n of the
mode-n unfolding matrix.

6. The downdated core tensor B∗ of the downdated tensor
A∗ can be calculated as B∗ = A∗ ×1 U (1)∗ ×2 U (2)∗ ×3

U (3)∗... ×N U (N)∗.

Algorithm 3 Matrix SVD downdating algorithm SV D−R;
[U∗, Σ∗, V ∗] = SV D−R[U,Σ, V, {Lm}(m=1,2,...,I)]

Input: SVD of original matrix B: {U,Σ, V }, and the I sets
of row vectors to be kept: {Lm},m = 1, 2, ..., I .

Output: SVD of downdated matrix B∗ after deleting arbi-
trary row entries: {U∗, Σ∗, V ∗}.

[V ∗, Σ∗T , U∗] = SV D−C [V, ΣT , U, {Lm}(m=1,2,...,I)].
(6)

Table 1. Estimation errors for tensor HOSVD downdating
|S∗(true) − S∗(est)| |U∗

1 (true) − U∗
1 (est)|

0 3.3388 × 10−14

|U∗
2 (true) − U∗

2 (est)| |U∗
3 (true) − U∗

3 (est)|
1.0586 × 10−14 1.9201 × 10−14

the retrieved multiple trajectories are visually quite similar
with the queries in both cases.

5. CONCLUSION

In this paper, we have presented two novel algorithms,
namely, DTSV D+ and DTSV D−, for dynamic updat-
ing and downdating of existing tensor HOSVD, when new
data is added or deleted, without recalculating of the raw data.
They have been successfully used to solve three fundamental
problems related to searching, indexing and retrieval of mul-
tiple motion trajectories. Simulations results on tensor and
multiple motion trajectories data demonstrate the robustness

1131

Fig. 2. Tensor HOSVD Downdating: (a) Tensor A of size
20 × 15 × 10 (b) Core tensor S of A. (c) Basis Matrix U1 (d)
Basis Matrix U2 (e) Basis Matrix U3 (f) Tensor A∗ extracted
from A, of size 7×10×5. (g) Core tensor S∗ of A∗ (h) Basis
Matrix U∗

1 (i) Basis Matrix U∗
2 (j) Basis Matrix U∗

3

Fig. 3. Multiple motion trajectory retrieval using tensor
HOSVD downdating: (a) A 2-traj query (b) The retrieved
most-similar 3-traj entry (c) The retrieved second most-
similar 3-traj entry (d) A 3-traj query of length 300 sec. (e)
The retrieved most-similar entry of length 1024 sec. (f) The
retrieved second most-similar entry of length 1024 sec.

and accuracy of the proposed algorithms.

6. REFERENCES

[1] X. Ma, F. Bashir, A. A. Khokhar and D. Schonfeld,
“Event Analysis Based on Multiple Interactive Motion
Trajectories”, IEEE Trans. on Circuits and Systems for
Video Technology, to be published.

[2] A. Levy and M. Lindenbaum, “Sequential Karhunen-
Loeve Basis Extraction and its Application to Images”,
IEEE Trans. on Image Processing, Vol. 9, No. 8, pp.
1371-1374, 2000.

[3] L. Lathauwer, B. D. Moor and J. Vandewalle, “A multi-
linear singular value decomposition”, SIAM Journal on
Matrix Analysis and Applications (SIMAX), pp. 1253-
1278, 2000.

Algorithm 4 Matrix SVD downdating algorithm SV D−C ;
[U∗, Σ∗, V ∗] = SV D−C [U,Σ, V, {Kn}(n=1,2,...,J)]

Input: SVD of original matrix B: {U,Σ, V }, and the J sets
of numbers for column vectors to be kept: {Kn}, n =
1, 2, ..., J .

Output: SVD of downdated matrix B∗ after deleting arbi-
trary column entries: {U∗, Σ∗, V ∗}.

1. Define a transform operator P , such that the transpose
of the original right singular vector matrix V is trans-
formed into the following form, where columns in posi-
tions corresponding to the deleted entries are transformed
to unit vectors that form identity matrices. One possi-
ble construction of P is the product of series of House-
holder Transform operators, where P =

∏
jd

Pjd
, and jd

belongs to the set of indices of columns that would be
deleted, Pjd

is householder transform matrix that trans-
forms jdth column to unit vector.

2. Define the column selecting operator Sc as

Sc = [eC1 |eC2 |...|eCm]; (7)

where eCm
= [0, 0, ..., 1, 0, 0...0]T is column vector with

1 at Cmth position and all 0s otherwise. And define the
row selecting operator Sr as

Sr =

⎡

⎢
⎢
⎣

eT
R1

eT
R1

...
eT

Rn

⎤

⎥
⎥
⎦ (8)

where eRm
= [0, 0, ..., 1, 0, 0...0]T is column vector with

1 at Rmth position and all 0s otherwise.
3. Construct Ṽ as Ṽ = Sr(PV T)Sc.
4. Calculate an intermediate core matrix ˜̃

S,

[˜̃U,
˜̃
S,

˜̃
V] = diagonalize(Ṽ T B∗T B∗Ṽ). (9)

.
5. Estimate the singular value decomposition

Σ∗ =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎣ diag(
√

(˜̃S))
0(M−∑ J

n=1 Kn)(
∑ J

n=1 Kn)

⎤

⎦ if
∑J

n=1 Kn ≤ M

diag(
√

(˜̃S))(1 : M,
∑J

n=1 Kn) otherwise

6. V ∗ = Ṽ × ˜̃
V .

7. U∗ = B∗ × V ∗ × Σ∗+, where Σ∗+ is pseudo inverse of
Σ∗.

1132

