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ABSTRACT

We propose a hierarchical-grid (HG) feature analysis framework 
for representing images in automatic image annotation (AIA). We 
explore the properties of codebooks constructed with different-
sized grids in image sub-blocks, and co-occurrence relationship 
between VQ codewords constructed from different grid systems. 
The proposed HG approach is evaluated on the TRECVID 2005 
data set using classifiers obtained with maximal figure-of-merit 
discriminative training. With multi-level and cross-level grid 
systems incorporating bigram information within and between 
higher and lower grid levels, we show that the AIA performance 
can be significantly improved. For 20 selected concepts from the 
39-concept LSCOM-Lite annotation set, we achieve a best F1 in 
almost all the concepts. The overall performance improvement 
with the combined multi-level and cross-level grid systems over 
the best single-size grid system in micro F1 is about 12.1%.

Index Terms— Automatic image annotation, high-level 
feature extraction, hierarchical-grid, video indexing

1. INTRODUCTION 

As a large volume of digital image/video data becomes available 
on the web, there is a growing research opportunity related to 
managing, organizing, and searching of multimedia documents 
efficiently, through indexing and information retrieval. However, 
the inherent complexity in representing and recognizing images 
and videos makes it more challenging than analyzing text 
documents. Automatic image annotation (AIA) is a technique to 
associate concept with image contents so that we can attach 
semantic descriptions to image and video documents like spoken 
and text documents for concept indexing and intuitive retrieval. 

Most AIA studies used statistical models to characterize 
image concepts, which typify the joint distribution of the observed 
visual features, such as color, texture and shape, and the image 
contents. To build statistical models, there have been various 
methods to extract visual features, and they offer us different 
possibilities [1]. The first approach uses image keypoints or local 
interest points. For example, difference of Gaussians was used to 
detect and describe keypoints using scale invariant feature 
transform (SIFT) descriptors [2]. An evaluation of two local 
detectors, Harris Laplace and Laplace of Gaussians, was 
performed in [3]. Another approach is to use dense regular grids 
instead of local interest points. This approach divides an image 
into equally spaced sub-blocks and extracts low-level visual 
features from each grid, such as using SIFT descriptors [4], and 
color histogram and log-Gabor filter to represent grid regions [5]. 

One of the advantages of the dense grid system is that, with 
computational efficiency, we can adopt latent semantic analysis 
(LSA), which gives us well-constructed techniques in statistical 
language modeling [6]. Using LSA, a unified framework for AIA 
was proposed [5] by converting image annotation into multi-
category (MC) text categorization (TC) [7] problems, and showed 
promising performance, and a series of AIA experiments have 
been conducted following this approach [8, 9]. 

While most previous studies with dense regular grids have 
been based on a single-size grid system [5, 8, 9], selecting an 
appropriate grid size is still a challenging problem, and the size is 
largely determined empirically. In AIA we would like to choose 
good grid sizes to generate meaningful codewords for image 
representation, and to represent enough contextual information of 
images. Therefore we are interested in exploring various grid sizes, 
and study grid systems in relationship with the number of training 
images and the type of classifiers being utilized in AIA. 

In this study, we examine characteristics of grid systems with 
different sizes, and explore image codeword relationship between 
different sizes of grids. We propose a hierarchical grid (HG) image 
representation framework for multi-level and cross-level concept 
modeling for AIA. We report on the TRECVID 2005 data set with 
the LSCOM-Lite [10] concepts. The overall improvement of our 
proposed HG approach with multi-level and cross-level grid 
systems is 12.1% when compared to the single-size grid systems, 
from 0.4848 to 0.5434 in micro-F1. We also found that the multi-
level grid representation is more tolerant to change of image sizes 
than single-size grid systems. 

2. BASELINE SYSTEM

We first review our baseline AIA system which was based on the 
multi-topic text categorization framework proposed in [5]. 

2.1. Text Representation of Images 

For text categorization, the document is considered as a “bag-of-
words” within a lexicon. To represent an image with a lexicon, we 
first segment an image into regular grids. From each grid, low-
level visual features are extracted, and a codebook is constructed 
by clustering of these feature vectors. Once a codebook is built, we 
can represent each grid as a visual alphabet (codebook index), and 
also an image as a sequence of visual alphabets, some of the form 
visual words. Since multiple low-level visual features are available 
for multiple alphabet sets, multiple lexicons can be built. 

After an image is represented with visual words by grouping 
co-occurring alphabets, the occurrence statistics of single-letter 
(unigram) and double-letter (bigram) visual terms are available, 

1125978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



and a feature vector is extracted with LSA [6]. For example, if we 
have a color lexicon, with M visual color 
terms, the color content of the j-th image is represented by a vector, 

Each component, , represents the 
statistics of in the j-th image as follows: 
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where K is the size of the training data, and is the total 
occurrence count of .  Since the vector dimension can be very 
high, dimension reduction can be accomplished naturally by 
singular value decomposition (SVD) [6]. 
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2.2. MC MFoM Learning and Discriminative Fusion 

Since each image in a training set is tagged with a set of multiple 
concepts and represented by a single LSA-based feature vector, for 
AIA classifier learning, we used multi-category maximal figure-of-
merit (MFoM) discriminative training which showed promising 
performance in TC [11]. The classifier parameters were estimated 
by directly optimizing any metric-oriented objective function (e.g. 
precision, recall or F1). We trained individual classifiers for visual 
features, such as color, texture and shape, and combined the scores 
with discriminative classifier fusion [9] to get the final concept 
score for performing concept tagging. 

3. COARSE VS. FINE GRID IN IMAGE ANALYSIS 

The LSA approach is largely based on visual words extracted from 
images and also their contextual relationships. Therefore, we need 
to examine the characteristics of visual terms and their 
distributions as we change the size of grids. 

3.1. Characteristic of Codebooks 

While image documents can be represented by multiple sparse 
vectors extracted with LSA on different alphabets obtained with 
various low-level image features, it is not clear what grid size is 
optimal to divide images into sub-blocks to construct meaningful 
alphabets and lexicons, since distributions of low-level visual 
features in a grid is usually changed as the grid size varies.  

Figure 1—Distribution of mean and variance of color features  

For example, Figure 1 plots the mean and variance of the R
colors from our training images according to the grid sizes. 
Lexicons are constructed quantizing these differently distributed 

low-level visual features. Given the same number of visual words, 
the lexicon from fine grids splits the mean value more diversely, as 
the lexicon from coarse grids does the variance value. Let’s say we 
want to find homogeneous region, then a coarse grid system might 
be more effective than a fine grid one. On the other hand, if we 
want to access to diverse color patterns, a fine grid will be 
appropriate. Both codebooks give different but useful information. 

3.2. Distribution of Visual Terms 

When we applied SVD to the LSA feature vectors, we found that 
the singular values are more concentrated in low dimensions as the 
size of grid decreases. We found two reasons to explain it.  

One observation is the ratio of bigrams of the two same visual 
words. As we can see in Table 1, the distribution of (n, n) bigrams 
increases as the size of grid decreases, and they are dominant in 
the fine grid system. When the domination of these bigrams 
increases, not surprisingly, the distribution of them follows that of 
unigrams. Therefore, we usually cannot obtain much useful 
information from them despite they dominate the feature space. 

Table 1—Ratio of (n, n) bigrams and zero cells 
Grid size (n, n) bigrams (%) Zero cells (%) 

4x4 47.44 8.27
8x8 23.94 40.50

16x16 18.91 59.68
32x32 13.86 78.16
64x64 9.75 91.11

Secondly, the number of “zero cells” in the LSA feature 
vectors increases as the size of the grid increases. If we use a too-
coarse grid system, the distribution of bigrams cannot give us 
contextual information much, since it is lack of diversity, or more 
importantly lack of details. On the other hand, if we use a fine grid 
system, we can achieve detailed information from the diversity of 
bigrams. However, it can result in over-fitting when we do not 
have enough training data with too-detailed grids.

4. CONSTRUCTION OF HIERARCHICAL GRID 

As studied in Section 3, different grid sizes generate codebooks 
with different properties. Moreover, they result in different co-
occurrences of bigram statistics which give us contextual meaning 
between visual terms in our LSA approach. 

4.1. Multi-size Grid Systems 

Image characteristics vary according to concepts. For example, 
“Sky” and “Desert” have homogeneous regions, while “Building”
and “People Marching” have complex textures. Some concepts 
can work better with a grid size than others with a different one.4x4

8x8
16x16
32x32
64x64

Figure 2—Image representation using two grid structures  

8x8 pixel grid 16x16 pixel grid
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Figure 2 illustrates image representation using two grid 
structures with 32 visual words. Here, the image is annotated as 
“Building”, “Sky”, and “US-Flag”. The 16x16 grid structure 
seems better to represent the homogeneous “Sky” region, since it 
is less sensitive to color differences than the 8x8 grid structure. 
However, it can be too coarse to describe details in the “Building”
and “US-Flag” region for this image. 

Considering these observations, we cannot guarantee that a 
grid system has an optimal size for all the concepts, even if it 
shows the best overall performance. Furthermore since local and 
global views give us different information, observing smaller and 
larger grids at the same time can be helpful. Therefore, we suggest 
using multiple-size instead of single-size grid systems. 

4.2. Cross-level Contextual Information 

Once a multi-size grid system is available, we can take 
advantage of additional contextual information from bigrams 
between two different grid levels. In Figure 2, the left diagram 
represents bigrams between higher and lower grid levels. For 
example, we have an 8x8 and a 16x16 grid system. A grid region 
in the 16x16 grid system will be divided into four grid regions in 
the 8x8 grid system. Then we can obtain four bigrams between 
four 8x8 grid regions and one 16x16 grid region. 

Figure 3—Bigram between higher and lower grid structures  

The right diagram in Figure 3 is a good example of what these 
bigrams allow us to do. As we can see even if the co-occurrence of 
visual words in the lower level is identical, here (17, 17; 17, 17), it 
can be differently quantized as visual word 1 or 14 in the higher 
level. It is largely because the distributions of low-level visual 
features are different according to grid sizes so that codebooks are 
differently constructed. On the other hand, the two identical visual
word 1 can be divided into different visual word sets in the lower 
level, (17, 15; 19 17) and (17 17; 17 17). Through smaller grids, 
we can obtain more details, however, at the same time, we may 
lose desirable global information. Bigrams between higher and 
lower levels allow us to keep that information. 

In summery, the proposed HG framework is a multi-level grid 
system with incorporating bigrams between higher and lower grid 
structures. The feature vectors are generated by cascading the LSA 
feature vectors from each grid level and those of bigrams between 
the levels. This approach can also be considered as early fusion, in 
contrast to late discriminative score fusion (e.g. [9]). 

5. EXPERIMENTAL RESULTS 

The single-, multi-size and proposed HG systems are evaluated on 
the TRECVID2005 data set, which contains 61,901 keyframes 
from 137 video clips of multi-lingual broadcast news. All of the 
keyframes are labeled with 39 concepts defined by LSCOM-Lite 

annotations. To thoroughly compare performance among systems, 
we selected a subset of 20 concepts which excludes those with too 
many or too few training images. We randomly chose 80 percent 
of the data for training, and the remaining 20 percent for testing. 

First, we tested our baseline system, varying the grid size at 
8x8, 16x16, 32x32 and 64x64 pixels. From these grids, we 
extracted two kinds of low-level visual features, the mean and 
variance of RGB and Lab for color feature, and 12 dimensional 
log-Gabor filter bank output for texture feature. These low-level 
features were quantized to construct visual alphabets for different 
grid sizes, so that we have four color and four texture lexicons. 
The codebook sizes are equally set at 32. For each grid system, 
MC MFoM classifiers were trained individually with color and 
texture lexicons, and fused by discriminative fusion [9].  

With these four levels of grid systems, we generated multi-size 
grid and HG systems, accumulating a series of combinations of 
visual terms. In Table 2, the notations of visual terms used in our 
experiment are listed. 

Table 2—Notation for visual terms 
Li Unigram and bigram in a single-size grid system, 8x8 for 

i=1, 16x16 for i=2, 32x32 for i=3, and 64x64 for i=4 
Lij Bigram between levels i and j of grid structures 

5.1. Comparison of Single- and Multi-size Grid Systems 16x16 pixel grid

8x8 pixel grid

1 14 1

17 15 17 17 17 17

19 17 17 17 17 17

Higher Level 

Lower Level 

We used F1 and micro-F1 as evaluation measures. First, for our 20 
selected concepts, we evaluated the single-size grid systems. L1
gives overall the best performance; however, it is not the optimal 
grid system for all of the concepts. L2 shows the best performance 
in “Weather”, “Military” and “Explosion/Fire”, and L3 works 
best in “Sports” and “Deserts”. It implies that the meaningful 
visual words and their distributions can differ according to the 
concepts, so that we can take advantage of and fuse the different 
grid sizes into multi-size grid systems. Figure 4 summarizes a 
comparison of single-grid systems for some concepts. 
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Figure 4—Comparison of single-size grid systems 
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Figure 5—Comparison of multi-size grid systems  
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To build multi-size grid systems, we sequentially fused the 
single-size grid systems from L1 to L1+L2+L3+L4, and examined 
the performance changes. As we can see in Figure 5, when we 
increase the number of the fused single-size grid systems, we 
observe the overall performance gradually increases. The 
interesting point is that we obtain significant improvements in the 
concepts that work well in the larger-size grid systems, e.g. 
“Sports”, “Weather”, “Office”, “Deserts”, “Airplane” and 
“Explosion/Fire”. However, we also degrade from the fusion. For 
example, in “Military”, “Animal”, and “People Marching” which 
show much worse F1 in some grid sizes compared to the others. 

5.2. Comparison of Multi-size and Hierarchical-grid Systems 

Finally, using the multi-level grid systems and cross-level bigrams 
between higher and lower grid structures, we constructed the HG 
system in the form of L1+L2+L3+L4+L12+L23+L34. As we add 
the bigrams to the multi-size grid systems, most of the concepts 
experienced improvements, 2.81% in average. It is noted that the 
concepts, which even do not have improvements in multi-size grid 
systems such as “Military”, “People Marching”, and “Maps”,
enjoy the same effect. Table 3 lists improvements of some 
concepts when comparing L1+L2+L3+L4 with the HG system. 
These seem to have derived from what we lost without using 
contextual information between different sizes of grid structures. 

Table 3—Improvement from multi to hierarchical-grid system 

Concept Improvement 
per concept (%) Concept 

Improvement 
per concept 

(%) 
Office 10.65 Mountain 6.63

Meeting 2.01 People Marching 14.08
Deserts 1.5 Explosion/Fire 0.3

Vegetation 2.7 Maps 7.14
Improvement of micro F1 for 20 concepts (%) 2.81

The overall improvement from the best single-grid system, L1,
to the HG system, L1+L2+L3+L4+L12+L23+L34, is about 
12.1% from 0.4848 to 0.5434 in micro F1. Among the 20 concepts, 
15 of them have the best performance in the HG system, and the 
remaining concepts show performance close to the best. 
Specifically concepts, such as “Sports”, “Weather”, “Office”,
“Deserts”, “Airplane”, “Car”, and “Explosion/Fire”, experienced 
significant improvements of more than 20% when compared to the 
best single-grid system, L1.

5.3. Tolerance against Change of Image Sizes 

In a single-size grid system, choosing the optimal grid size is a 
tricky problem, and the size is often chosen empirically. In our 
training data, the size of an image is 352x240, and L1 shows the 
best performance. We evaluated the tolerance of our HG system 
against changes in training image sizes, and compared it with L1.

Table 4—Performance change in different image sizes 
Single-size grid Hierarchical-gridResize ratio  

(%) m-F1 +/- (%) m-F1 +/- (%)
70 0.4736 -2.3 0.5417 -0.3

100 0.4848 0 0.5434 0
130 0.4998 +3.1 0.5488 +1.0

We regenerated the training data set by resizing the image to 
70% and 130% of the original size, respectively. For each new 
training set, we list the performance changes in Table 4. It is 

clearly noted that the HG system is slightly more tolerant to 
moderate image size changes than the single-size grid system. 

6. CONCLUSION AND FUTURE WORK
We propose a hierarchical grid image representation framework 
for feature extraction for AIA. The proposed approach facilitates 
multi-grid and cross-grid image analysis and enables choosing 
multiple grid sizes for meaningful image analysis and contextual 
information representation. It also allows various combinations of 
multiple grid systems for feature and contextual analysis. Even 
using only very coarse low-level feature quantization (5-bit for 
both color and texture) the experimental AIA results on the 
TRECVID2005 data set show that the proposed hierarchical grid 
approach attains better F1 than our best single-size grid system. It 
also demonstrates more tolerance against change of image sizes. 

We are currently experimenting with even dense grid systems. 
One interesting direction is to change the grid size adaptively 
based on image contents. This is motivated by scale invariant 
descriptors like SIFT [12]. Combining dense grid systems with 
local-interest-point systems can be another research front to 
explore.
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