
HIGH-LEVEL FEATURE EXTRACTION USING SVM WITH WALK-BASED GRAPH 
KERNEL 

 
Jean-Philippe Vert1,2, Tomoko Matsui3, Shin'ichi Satoh4, Yuji Uchiyama5

 
1Centre for Computational Biology, Mines ParisTech, Fontainebleau, France 

2Institut Curie, Inserm U900, Paris, France 
 3Institute of Statistical Mathematics, Tokyo, Japan 

4National Institute of Informatics, Tokyo, Japan 
5Picolab Co., Ltd, Tokyo, Japan 

 
ABSTRACT 

 
We investigate a method using support vector machines 
(SVMs) with walk-based graph kernels for high-level 
feature extraction from images. In this method, each image 
is first segmented into a finite set of homogeneous segments 
and then represented as a segmentation graph where each 
vertex is a segment and edges connect adjacent segments. 
Given a set of features associated with each segment, we 
then obtain a positive definite kernel between images by 
comparing walks in the respective segmentation graphs, and 
image classification is carried out with an SVM based on 
this kernel. In a benchmark experiment on the MediaMill 
challenge problem, the mean average precision increased 
from 0.216 (baseline) to 0.341 when our method was 
utilized. 
 

Index Terms— High-level feature extraction, graph 
kernel, walk kernel, support vector machine. 

1. INTRODUCTION 

Our goal is to develop a method of high-level feature 
extraction (HFE) from images, e.g., detecting whether an 
image is a landscape or contains an object such as a car or a 
dog. If a list of concepts (such as “is a landscape” or 
“contains a dog”) is given, this task can also be regarded as 
a set of supervised binary classification tasks, where each 
image must be assigned a set of binary labels to indicate 
whether or not it belongs to each concept class. Unlike more 
specific tasks such as face or character recognition, the 
emphasis in HFE is on obtaining generic and versatile 
automatic tools that can “learn” any concept from a set of 
examples belonging to the concept class. 

To reach this goal, we investigate a strategy where each 
image is first automatically segmented into a finite set of 
“homogeneous” segments and then represented as a 
segmentation graph, where each vertex is a segment and 
edges connect adjacent segments. A set of features such as 
size, color, and texture are associated with each segment. 

Using this graph-based representation, we apply a graph 
classification method to classify the images. More precisely, 
we investigate the use of graph kernels in combination with 
support vector machine (SVM) classification. 

We confirmed the relevance and effectiveness of our 
method by evaluating it in a benchmark experiment on the 
MediaMill challenge problem[1] and we report promising 
results. 
 

2. METHOD  

Our method for HFE contains three steps, as shown in 
Figure 1: (i) image segmentation, (ii) kernel calculation, and 
(iii) SVM classification. In (i), each input image is 
automatically segmented and represented as a segmentation 
graph, as explained in Section 2.1. In (ii), a walk-based 
positive definite kernel between segmentation graphs is 
computed, as explained in Section 2.2. Finally, HFE treated 
as a set of binary classification problems is performed with 
an SVM using the walk-based kernel between segmentation 
graphs to classify images. 
 

 

Fig. 1. Overall procedure of our method. 

2.1. Graph-based representation of images 
The first step of our approach is to automatically split each 
image into a variable number of homogeneous regions, 
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using an unsupervised segmentation method[2], as in Figure 
2. The image is then represented as a segmentation graph, 
i.e., a simple graph G = (V, E), whose vertices V are the 
segments obtained by automatic segmentation and whose 
edges E connect vertices corresponding to adjacent 
segments of the image. The number of vertices (i.e., of 
segments) depends on the image. Furthermore, each 
segment is characterized by a set I of 23 features presented 
in Table 1. The 12 texture features (nos. 12–23) are the 
responses to a small filter bank of orientation and spatial-
frequency selective linear filters[3]. Among them, the first 
six filters are the first derivatives of the Gaussian filter with 
�x = 1 (pixel) and �y = 3, with six orientations. The 
following six filters are the second derivatives of the 
Gaussian filter with �x = 2 and �y = 3 2 , again with six 
orientations. For each segment v � V of a segmentation 
graph, we denote by F(v) = (fi(v))i� I �RI the vector of the 
features (23-dimensional in our case). 

Fig. 2. Example of segmented image from data set of 
TRECVID2005.  

 
Table 1. Features characterizing each image segment. 

Feature no. Description 
1 Average x 
2 Average y 
3 Area in pixels 
4 Boundary length divided by area 
5 Second moment of area 
6–8 Average red, green, blue (RGB) intensities 
9–11 Standard deviations of RGB intensities 
12–23 Texture features 

 
2.2. Walk-based graph kernel 
We use the notion of walk-based graph kernels[4,5,6] to 
define positive definite kernels between segmentation 
graphs. We note that similar ideas were previously 
investigated by Harchaoui and Bach[7] using the notion of 
subtree graph kernels[8,9], and by Aldea et al.[10] using the 
notion of a marginalized kernel[4], in both cases for more 
specific image classification problems. 

In order to define the walk-based graph kernel, we first 
define a walk w in a graph G = (V, E) as a finite sequence of 
connected vertices, i.e., w = (v1, ..., vl) with Vvi �  for i = 1, 
…, l and Evv ii �� ),( 1  for i = 1, …, l. Here, l is called the 
length of walk w. Furthermore, we impose the constraint 

that the walk does not totter in the sense of [6], i.e., that vi � 
vi +2 for i = 1, …, (l – 2). We denote by Wl(G) the set of 
walks of length l in G. 

We now define positive definite kernels between vertices. 
For any vertices in two graphs v1 � V (G1) and v2 � V (G2), 
we define a kernel between v1 and v2 as a kernel between 
their respective features, e.g., a Gaussian kernel: 
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Given two walks of length l in two graphs w = (v1, ..., vl) 
� Wl (G) and w’ = (v’1, ..., v’l) � Wl (G’), we now define a 
walk kernel between w and w’ as the function: 
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Then we define the walk-based graph kernel of depth l 
between two graphs G and G’ as 
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It should be noted that if l = 1, no adjacency information is 
taken into account in the kernel. An image is then 
considered to be a “bag-of-segments”, and the kernel 
between two images is simply the sum of the vertex kernels 
between all possible pairs of segments. When l > 1, the 
adjacency information is taken into account.  

Finally, we define the walk-based kernel as the sum for 
multiple depths l = 1, …, L between two graphs G and G’ as 
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We implemented the walk-based graph kernel using a 
recursive process, as explained in [6]. Since this kernel is 
positive definite, we can perform image classification with 
an SVM using the kernel on the segmentation graph 
representation of the images. 
 

3. EXPERIMENTS 

3.1. Data specification and benchmark experiment 
We tested our method in the benchmark experiment (called 
“Experiment 1”) of the MediaMill challenge problem[1], 
which is often used as a benchmark for HFE systems. This 
problem contains data from the HFE track of the TREC 
Video Retrieval Evaluation (TRECVID) 2005/2006 
benchmark[11]. The goal is to assign one or several of 101 
concepts to individual images extracted from videos. The 
dataset contains 30,993 images in the training set and 
12,914 in the test set, both with human annotation.  

We compared our method with the baseline method of 
[1] in which each image is first converted to a 120-
dimensional vector of visual features, and classification is 
performed with an SVM. Visual features express image 
concepts and each feature corresponds to a bin 
characterizing one of the pairs of 15 low-level visual 
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concepts (e.g., road and sky) and 8 concepts characterizing 
both global and local color-texture information.  

To assess the performance of the methods, we measured 
for each concept the average precision (AP) as the area 
under the precision/recall curve. The AP for each concept 
was averaged to produce the final mean average precision 
(MAP).  

In the experiments, we set I = [1,23] and L = 5 for the 
walk-based graph kernel. For � in eq. (1) and the penalty 
parameter of the error term C, we set � = 16 and C = 10. 
These values were selected through three-fold cross 
validation on the training set, as explained in Section 3.3. 
 
3.2. Comparison with baseline performance 
The APs for the concepts are shown in Figure 3. For almost 
all concepts, except for 11 concepts out of 101, (“candle,” 
“drawing,” “fireweapon,” “hassan_nasrallah,” “motorbike,” 
“nightfire,” “people_marching,” “racing,” “religion_leader,” 
“sharon,” and “tank”), the APs obtained with our method 
were higher than the baseline ones. The MAP was 0.341 for 
our method versus 0.216 for the baseline method. This 
corresponds to a significant relative increase of 58%. Since 
both the baseline method and our method are based on an 
SVM, the difference in performance highlights the 
importance of choosing the correct kernel. 

 
Fig. 4. MAPs for three-fold cross validation for the 
graph kernel and for SVM parameters � and C.

3.3. Cross validation for the graph kernel and SVM 
parameters
Figure 4 shows the MAPs in three-fold cross validation on 
the training set for different parameters of the graph kernel 
in eq. (1), � = 5, 8, or 16, and for different regularization 
parameters of the SVM, C = 1, 10, or 100. The MAP with � 
= 16 and C = 10 was the best, and these parameters, selected 
using only training data, were therefore selected for 
evaluating the test data (section 3.2). We note that the 
choice of parameters can have an important effect on the 
final performance, so parameter tuning is important. It 

should be noted that, in an open evaluation of the different 
parameters on the test data, we also obtained the best MAP 
with the same parameter values.  

3.4. Influence of walk length 
An important parameter of walk-based kernels is the length 
of the walks considered. By default, we summed the kernels 
corresponding to walks of lengths 1 to 5, which amounts to 
considering all walks of length 1 to 5 to compare two graphs. 
To further assess the importance of the length and of 
combining different lengths together, we investigated the 
performance of walk-based kernels for a specific length (3) 
and compared them with the sum kernel (4). To save 
computation time, here we use only a subset of the 
benchmark data and focus on only 39 concepts out of 101. 
The subset contains 1000 images selected randomly from 
the original training and 1000 similarly selected from the 
testing data. MAPs obtained when separately using the 
graph kernels with depth l = 1, …, 5 and the sum (L-SUM) 
are shown in Figure 5. Recalling that the case l = 1 
corresponds to not taking into account the adjacency 
information of segments on the images, we first observe a 
significant improvement when this adjacency information is 
taken into account (l>1). Second, we observe that the sum 
kernel is better than each individual kernel, suggesting that 
walks of different lengths may be relevant for classification, 
and that simply adding together kernels for different lengths 
is a simple yet effective way to exploit this information. 
 

 
 
 

4. CONCLUSIONS 
 
In this paper, we investigated an HFE method using the 
walk-based graph kernel. In the benchmark experiment on 
the MediaMill challenge problem, we obtained a relative 
increase of 58% compared with the baseline performance. 
This confirms the relevance of our approach. 
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Fig. 3. APs for each concept using KL-SUM.  

Our future work will include kernel design for not only 
vertices but also edges of the segmentation. Moreover, we 
plan to investigate the optimal subset I selection for features 
and the weighted sum of the walk-based graph kernels. 
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