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ABSTRACT

We present a CMOS imager with built-in capability to per-

form Compressed Sensing coding by Random Convolution.

It is achieved by a shift register set in a pseudo-random con-

figuration. It acts as a convolutive filter on the imager focal

plane, the current issued from each CMOS pixel undergoing a

pseudo-random redirection controlled by each component of

the filter sequence. A pseudo-random triggering of the ADC

reading is finally applied to complete the acquisition model.

The feasibility of the imager and its robustness under noise

and non-linearities have been confirmed by computer simula-

tions, as well as the reconstruction tools supporting the Com-

pressed Sensing theory.

Index Terms— Compressed Sensing, Imager, Analog

Processing, Random Convolution, CMOS.

1. INTRODUCTION

The 20th century has seen the development of a large variety

of sensors capturing accurate representations of the physical

world (e.g. optical sensors, radio receivers, seismic detector,

...). Since the purpose of these systems was to directly acquire

a meaningful signal, a very fine sampling of this latter had to

be performed. This was the context surrounding the Shannon-

Nyquist condition stating that each continuous band-limited

signal can be recovered from its discretization if its sampling

rate is at least two times the bandwidth.

A recent theory named Compressed Sensing (or Com-

pressive Sampling) [7] has shown that this lower bound on

the sampling rate can be highly reduced, under the conditions

that, first, the sampling is generalized to any linear measure-

ment of the signal and second, specific a priori hypotheses

on the signal are realized. In short, if the signal has only

K non-zero (or important) coefficients in a given basis Ψ,

then its generalized sampling can be achieved in only M =
O(K log(M/K)) linear measurements.

This straightforward statement is a real revolution for the

physical design of many sensors. It means that a given sig-

nal does not need to be acquired in its initial space as previ-
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ously, but can really be observed through a “distorting glass”

(providing it is linear) with fewer measurements. The pair en-

coder (sensing) and decoder (reconstruction) is also asymmet-

ric: the encoder is computationally light and linear, and also

completely independent of the acquired signal (non-adaptive),

while the decoder is non-linear and requires high computing

power for real-time applications.

Interestingly, Compressed Sensing (described shortly in

Section 2) reintroduces the concept of local analog process-

ing of sensor signals, i.e. in-situ. Previous sampling schemes

quickly lead to the digitalization of the recorded values, limit-

ing as much as possible the analog path linking the real world

to the digital output. However, the generalized sampling in-

duced by CS increases the class of physical systems (intrin-

sically analog) leading to usable signal measurements. Last

years have seen the development of such CS sensors: we may

cite the one-pixel camera [1], CS Imager of Georgia Tech

[2], Coded-Aperture Imaging [3], Ultra-wideband Frequency

Hopping signals [4], and DNA microarrays [5].

In Section 3, we present a CMOS optical sensor array ex-

ploiting the key concepts of CS. This unit relies on a specific

signal measurement named Random Convolution [6] imple-

mented in the analog domain by the control of a shift register

(1-bit memories sequence) acting as a convolutive filter in the

focal plane. The imager array has been fully designed but has

not yet been manufactured. Electrical simulations (analog and

digital) have confirmed correct operation of the image sensor,

while software simulations (Section 4) have been used to con-

firm the operation of the full system (encoder and decoder),

and its stability under noise and non-linearities.

The proposed sensor is of course not designed for end-

user systems (e.g. mobile phone). It meets however the

requirements of technological niches with strong constraints

(e.g. low power consumption) since the adopted CS coding

involves a low computational complexity compared to sys-

tems embedding transform-based compression (e.g. JPEG

2000).

2. COMPRESSED SENSING: KEY CONCEPTS

Let us assume that an image x ∈ R
N×N is “well described”

in a certain orthonormal basis, e.g. the DCT or the Wavelet
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representation1. More precisely, by vectorizing x into an el-

ement of R
N̄ with N̄ = N2, keeping the notation x(p,q) for

the 2-D representation of the image, we assume that the de-

composition x = Ψα in a basis Ψ ∈ R
N̄×N̄ , i.e. a set of

N̄ orthogonal elements ψj ∈ R
N̄ hosted in the columns of

Ψ, leads to a vector α ∈ R
N̄ with few non-zero coefficients

(strict sparsity) or with a power law decay in ordered ampli-

tudes (compressible signal).

Classical sampling/compression strategies consist in ob-

serving all the xi, i.e. at Nyquist rate, computing all the

components of α = ΨT x, and only keeping the K first co-

efficients of α to keep the essential information of x (or the

exact one if x is K-sparse). This is a wasteful process how-

ever since in the best case O(N̄) operations (e.g. for wavelet

transform) are needed to compute α while only K � N co-

efficients are kept.

Compressed Sensing (CS) theory [7] introduces a sensing
or measurement matrix Φ made of M � N̄ sensing vectors

ϕi ∈ R
N̄ hosted in the rows of Φ ∈ R

M×N̄ . CS shows that

if M � O(K log N/K), then, for a matrix Φ = (ϕij) ∈
R

M×N̄ generated randomly from a Gaussian distribution, i.e.

ϕij ∼N(0, 1/M), x can be recovered from the measurement
vector y = Φx with an overwhelming probability. This is

achieved by solving the Basis Pursuit (BP) problem

min
u

‖u‖1 subject to y = ΦΨu, (BP)

where ‖u‖1 =
∑

i |ui| (the �1 norm). The proof of this recov-

ery relies on the Restricted Isometry Property (RIP) of such a

random matrix Φ, i.e. the fact that there exists a constant 0 <
δk < 1 such that (1− δk) ‖x‖2

2 � ‖Φx‖2
2 � (1 + δk) ‖x‖2

2,
for all K-sparse x ∈ R

N and with ‖w‖2
2 =

∑
i |wi|2.

Other random matrices such as the Bernoulli/Rademacher

matrix, i.e. ϕij = ±1/
√

M with equal probability, are RIP.

As described in the next Section, we use another particu-

lar sensing matrix almost as optimal as the Gaussian or the

Rademacher matrices: the Random Convolution [6].

In a non-ideal sensing the measurements are corrupted by

some additive Gaussian noise n in the model y = Φx + n.

A more stable reconstruction is then provided by the Basis
Pursuit DeNoise (BPDN) method, i.e.

min
u

‖u‖1 subject to ‖y − ΦΨu‖2 � ε, (BPDN)

with ε set in function of the noise power. Both BP and BPDN

can be solved efficiently using for instance Linear Program-

ming techniques (LP) or Second Order Cone programming

(SOC) respectively.

It is often more efficient to impose that the discrete

image gradient ∇x be sparse, replacing the �1 norm in

BP and BPDN by the Total Variation (TV) semi-norm

‖u‖TV = ‖∇u‖1 =
∑

i |(∇u)i|. Magnetic Resonance

1This also holds for redundant basis such as the steerable wavelets or the

curvelets.

Imaging [8] shows for instance that this TV minimization

is very efficient and we will use it for the reconstruction of

images acquired by our CS imager. A simulation presented

in Section 4 confirms the potential of the approach.

3. DESCRIPTION OF THE IMAGER

3.1. Framework and Sensing Strategy

In the sensing model y = Φx of our imager, we could have

taken for Φ ∈ R
N̄×N̄ the Gaussian random matrix2. How-

ever, we have preferred the Random Convolution strategy ex-

plained in a recent work of J. Romberg [6]. In short, it dic-

tates to pick M random values in the convolution of the image

x ∈ R
N̄ with a random filter. The resulting sensing matrix is

still optimal and requires a similar number of measurements3,

i.e. M � O(K log(N̄/δ)) for a probability of successful re-

covery of 1 − δ, given δ ∈ [0, 1].
The random convolution of an image x ∈ R

N̄ by a ran-

dom filter a ∈ R
N̄ is mathematically described by

yi = (Φx)i =
∑

i

ar(i)−j xj = (x ∗ a)r(i), (1)

where r(i) ∈ {1, · · · , N̄} is selected uniformly at random.

Initially, the filter a is defined in the Fourier domain by a vec-

tor of unit amplitudes and random phases. However, in this

work, we use the less optimal choice of a filter a defined spa-

tially as a Rademacher sequence of ±1.

This sensing is interesting for two aspects. First, in the

reconstruction stage that generally involves many matrix-

vector computations with Φ and ΦT , these operations are

obviously simplified into the application of some FFTs of

O(N̄ log2 N̄) complexity. Second, random convolution can

be implemented very simply by the action of a shift-register

(a chain of one-bit memories linked to each pixel) on the cur-

rents provided by the sensor array. We describe this striking

aspect in the next section.

3.2. Microelectronic architecture

The system architecture of the imager array is depicted in

(Fig. 1). A regular array of N × N standard CMOS Passive

Pixel Sensors (PPS) with an active area of 30μm × 30μm

forms the core of the imager. Each pixel contains a photo-

diode delivering a maximal current of 200μA. The PPS con-

figuration has some drawbacks related to high consumption,

average sensitivity, but enables a high design fill-factor.

A one-bit flip-flop memory is implemented in each PPS,

in the close vicinity of the photodiode. This memory stores

the information related to the random coefficient filter value

ai. Its input and output are connected to the memories of

2Or a pseudo-random alternative starting from a given seed to avoid the

storage of this huge matrix.
3There is an additional constraint however imposing M �

O(log3(N̄/δ)) independently of the sparsity level K.
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Fig. 1. Scheme of the CMOS Compressed Imager.

two neighboring pixels (according to the arrows in Fig. 1),

thereby forming a N̄ -bits Shift Register (SR). If we push one

1-bit value into the input of the first pixel memory, the whole

sequence a is moved by one element in the SR, which is the

exact behavior required to implement a convolution.

The image acquisition process is achieved according to

the following steps. First, as an initialization stage, a pseudo-

random Rademacher sequence a is generated by a Linear

Feedback Shift Register (LFSR) with a cyclic period larger4

than N̄ . This pseudo-random sequence can be regenerated on

the decoder knowing the seed of the LFSR. As it is generated,

this sequence is pushed into the N̄ -bits SR using the memory

input of the first pixel. The system is ready to perform the

first image acquisition after N̄ clock cycles. In each PPS, the

output current is proportional to the light intensity xi. The

sign of this current is adjusted by the 1-bit value stored in the

memory. This current is collected according to Kirchoff’s law

(added or subtracted) on a wire connecting all the pixels of

the same grid column. Each column is connected to the input

of one Operational Amplifier (Op-Amp). The voltage output

of the Op-Amp is subsequently converted to a digital value

by an Analog to Digital converter (ADC), using time-domain

multiplexing of the input. The ADC output is in turn accu-

4The number of registers in the LFSR has to be larger than log2 N̄ .

mulated to form the final compressed image value. Scanning

the columns is intended to limit the current provided to the

Op-Amp, but requires a higher processing frequency, and N
digital summations (accumulations) of the ADC outputs to

obtain one CS measurement. This scenario was adopted to

limit the physical width of the column lines, as a benefit of a

smaller dynamic range of the current to be handled.

Second, for the realisation of the next measurements, the

content of the SR has to be adapted. According to the afore-

mentioned developments, by pushing the last 1-bit value of

the grid, i.e. aN2 , into the first pixel memory5, the system is

potentially ready to acquire a second measurement. However,

to fit the random convolution model (1), a random trigger-

ing of the measurement reading, i.e. of the Op-Amps/ADC

blocks activation, must be applied. This triggering is ob-

tained by logically combining several LFSRs6 so that it is ac-

tivated with a certain rational probability p. If the triggering

is off, a new SR shift is performed without any reading. If

it is on, a measurement is acquired and quantized by the Op-

Amps/ADC layer according to the scheme described for the

first acquisition.

After N̄ shifts of the SR, which correspond to its cycling

period, M 	 pN̄ triggerings/measurements are produced, i.e.

an average of N̄/M = p−1 clock cycles per measurement. In

our project, M = N̄/3 measurements may be provided in

400ms, taking into account the bandwidth of the custom Op-

Amps (214kHz) and an initial setup of N = 64. In a near

future, we plan to improve these technological characteristics

to reach 25 frames per second (fps), i.e. 40ms per frame,

with N̄ = 2562 pixels, and use an Active Pixel Sensor (APS)

configuration.

Irrelevantly from the final number of frames per second,

it is important to understand that our scheme assumes that

the observed scene be still over the time elapsed between two

consecutive frames, i.e. between two full acquisitions of M
measurements.

4. SIMULATION

The output of the imager is simulated as the measurement

vector ỹ obtained from the quantization of a noisy ran-

dom convolution of an 256 × 256 image (Fig. 2) with

a Rademacher pseudo-random pattern. In other words,

ỹ = QΔ

[
Φx + n0

] 	 Φx + n, where n0 is a white

noise on the measurements (e.g. thermal noise), i.e. (n0)i ∼
N(0, σ2

0), and QΔ is the quantization operator of step size

Δ. This value is set so that ỹ can be coded in 11-bits, i.e.

Δ = 2 ‖Φx‖∞/211. Thus, the final noise n combines the

quantization noise, the measurement noise n0, and possi-

ble non-linearities in the system, e.g. due to the Op-Amp

current-to-voltage conversion or to the ADC. We assume

5Equivalently, if the LFSR period is equal to N̄ , the desired loop occurs

naturally in the pseudo-random sequence without any physical connection

between the first and the last pixel memories.
6For instance, with a global AND operation on n LFSR outputs, the trig-

gering occurs with probability p = 1/2n at each clock signal
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Fig. 2. (left) Original Image. (right) Reconstructed image with
M = �N̄/3�, from noisy measurements quantized on 11-bits.
PSNR 27.3 dB.

here ni ∼ N(0, σ2) with σ2 = σ2
0 + σ2

ADC + Δ2

12 and√
σ2

0 + σ2
ADC = ‖Φx‖∞/100.

From this imager simulation, we have run the reconstruc-

tion stage (i.e. the decoder) using a regularized BPDN solver

named TwIST [9] defined with the TV norm (see Section 2).

The regularizing parameter has been tuned iteratively so that

the fidelity term ‖Φu − ỹ‖2 	 ε, where ε 	 σ
√

M is the

noise power. Notice that in case where ε cannot be easily es-

timated a Cross-Validation technique could be used to avoid

noise overfitting in the reconstructed image [10].

The result of the reconstruction is presented in Fig. 2 for

a number of measurement M = 
N̄/3�. The reconstruction

reaches a PSNR of 27.3 dB.

5. PREVIOUS WORKS

Our system exhibits similarities with the CMOS Analog Im-

ager (CAI) of R. Robucci et al. [2]. Nevertheless, our system

is optimized for Compressed Imaging while the CAI is a more

general architecture aims at realizing alternate analog signal

processing (e.g. DCT or wavelet transform). This generality

reflects into a larger electronic system, e.g. due to the stor-

age of the (random or structured) sensing matrix Φ out off

the array. Our system is more performant in terms of mem-

ory, where random convolution needs only a N̄ bit storage

on the focal plane, and faster since the SR configuration can

be adapted for the next measurement within few clock cycles

(i.e. N̄/M ).

Another analog implementation is the Single-Pixel Cam-

era [1] of the Rice group. In this system, the analog sensing

is obtained optically by focusing the reflection of an image

on a Digital Micromirror Device (DMD) in a random sens-

ing configuration on an unique photodiode (pixel). As for

any micro-mechanical system used to perform analog pro-

cessing, the pair DMD-photodiode is subject to various non-

linearities (e.g. nonuniform reflectance of the mirrors through

the focusing lens, nonuniform mirror positions, light to cur-

rent photodiode conversion). We are convinced that our im-

ager suffers less from these imperfections since it relies on an

homogeneous analog processing in the electric domain, and

uses a mature CMOS fabrication technology. Errors and non-

linearities induced by all the micro-electronic modules (e.g.

PPS, Op-Amp, ADC) can be reduced, modeled and on-chip

calibration applied to counter their effects.

6. CONCLUSION

We have presented a new microelectronic system for com-

pressed imaging operating mainly in the analog domain,

where ADC quantization is applied on the final measure-

ments. A moderate size grid of 642 pixels has been selected,

and a first prototype has been developed in a 0.35μm CMOS

technology. Fabrication, testing and calibration of the device

is expected to provide insights into noise perfomance and ac-

tual non-linearities. The simulation model will include them,

enabling extracting the correct noise power ε.

In a near future, we plan to adapt the same technology to

2-D grid of biosensors for analysing the electrical activity of

a group of connected neural cells [11]. The biosignal pro-

duced is indeed sparse both in the spatial and in time domain,

confirming the applicability of CS.
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