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ABSTRACT

In many imaging applications, the continuous phase information
of the measured signal is wrapped to a single period of 2π, resulting
in phase ambiguity. In this paper we consider the two-dimensional
phase unwrapping problem and propose a Maximum a Posteriori
(MAP) framework for estimating the true phase values based on the
wrapped phase data. In particular, assuming a joint Gaussian prior
on the original phase image, we show that the MAP formulation
leads to a binary quadratic minimization problem. The latter can
be efficiently solved by semidefinite relaxation (SDR). We compare
the performances of our proposed method with the existing L1/L2-
norm minimization approaches. The numerical results demonstrate
that the SDR approach significantly outperforms the existing phase
unwrapping methods.

1. INTRODUCTION

Phase unwrapping is a classical problem which arises from many
branches of applied physics and engineering, such as optical interfer-
ometry, magnetic resonance imaging, and synthetic aperture radar.
In these applications, the true phase values of the reflected signals
from an imaged object are “wrapped” in a common range of [−π, π].
This results in not only discontinuities in the measured phase values,
but also ambiguities that are an integer multiples of 2π. Thus, a com-
mon problem in these applications is to restore the true phase values
from the measured phase data which are wrapped and corrupted by
noise. Such a process is called “phase unwrapping.”

Phase unwrapping is essentially ill-posed due to the ambiguity
resulted from the wrapping operator. To solve the phase unwrapping
problem, additional properties need to be utilized in the unwrapping
process. One commonly used property is the continuity of the true
phase values. The continuity requires the phase differences of neigh-
boring pixels to be within the range of half of the period (namely, π).
When such condition is satisfied for noise-free data, the “aliasing”
problem caused by the wrapping operator can be circumvented and
the true phase values can be recovered up to a global constant. This
is the so-called Itoh’s approach, which was introduced in the early
1980’s [1].

The continuity condition of the true phase can be violated in
practice either due to abrupt changes in the underlying physical ob-
jects being imaged, or because of the impulsive measurement noise.
As a result, “aliasing” problem still exists and ambiguity occurs
when one tries to reverse the wrapping operation. Hence, other prop-
erties must be exploited in the formulation of the phase unwrapping
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problem. For instance, in a 2-dimensional (2-D) image, the gradient
field satisfies the so-called network flow constraint [2]: the sum of
gradient vectors along each loop in an image must be zero. Incorpo-
rating this network flow constraint, various phase unwrapping meth-
ods have been proposed in the literature. Among them, the most well
known ones are the so called Lp-methods which aim to estimate the
gradient field of the true phase image by minimizing an error func-
tion measured in Lp-norm [3]. For instance, due to its simplicity,
the L2-norm phase unwrapping has been well studied and widely
used in many applications [4, 5, 6, 7, 8]. In addition to the Lp-norm
approach, several other methods have also been proposed including
belief propagation [9], network programming [10], and neural net-
works method [11].

In this paper, we study the 2-D phase unwrapping problem. As-
suming a joint Gaussian prior on the unwrapped phase value, we ob-
tain a statistical model for the phase ambiguity and propose a Max-
imum a Posteriori (MAP) framework for estimating the true phase
values from its wrapped counterpart. At each sampling point, the
phase ambiguity is an integer multiple of the period 2π and there-
fore can be modeled by an integer constraint. As a result, the MAP
framework formulation can be turned into a quadratic minimization
problem with integer variables and a linear network flow constraint.

Due to the integer constraints, the resulting optimization prob-
lem is NP-hard [12, 13]. To facilitate numerical solution, we fur-
ther simplify and reformulate this nonlinear integer programming
problem, effectively reducing it to a binary quadratic minimization
problem. We then apply the tools of semidefinite relaxation (SDR)
approach introduced in [14, 15]. The SDR approach basically con-
vexifies the binary quadratic minimization problem to a semidefinite
programming that can be solved in polynomial time [16]. Moreover,
a further randomization step is used to extract a binary solution from
the optimal solution of the relaxed semidefinite programming. To
demonstrate the effectiveness of our proposed approach, we com-
pare its performance with the existing L1/L2-norm minimization
approaches. The numerical results demonstrate that the SDR ap-
proach significantly outperforms these existing phase unwrapping
methods.

2. 2-D PHASE UNWRAPPING PROBLEM

Assume that the principle period for the wrapped phase data is
(−π, π]. The 2-D phase unwrapping problem is to restore the true
phase φij (on aM ×N grid) from the wrapped data ψij , which is
φij shifted to the interval (−π, π]. In particular, we have

ψij = φij − 2πkij , for all 1 ≤ i ≤ M, 1 ≤ j ≤ N, (1)

where ψij = φW
ij , and kij = φD

ij ∈ Z is an integer. Note that
(·)W denotes the wrapping operator, e.g., φW

ij denotes the wrapped
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Fig. 1. Illustration of edge ordering.

part of φij , and (·)D denotes the integer component (or the inte-
ger quantity involved in the wrapping operation). The problem of
decoding φ from ψ is basically ill-posed due to the wrapping oper-
ator. Almost all existing phase unwrapping techniques start from a
continuity assumption stated below.

Definition 1 For an image f on aM ×N grid, we say that f sat-
isfies the continuity condition if for all 1 ≤ � ≤ L, it holds that

|(∇f )�| < π, (2)

where ∇f is the gradient field of f , consisting of L
def
= 2MN −

M −N quantities that are differences of neighboring pixels.

The differences of the neighboring pixels in f are put into a
vector of dimension L in ∇f with the following index order (see
Fig. 1 for the case ofM = N = 3). Starting from the pixel at (1, 1),
the horizontal gradient field on the N − 1 horizontal edges in the
first row are indexed as the first N − 1 components. The vertical
gradient field elements are appended subsequently as the following
M−1 components of∇f . After the first 2N −1 elements with one
or both vertices on the first row, we then start from the pixel at (2, 1)
and repeat the same indexing for the second row, until reaching the
pixel at (M, 1).

For an image f of on an M × N grid, it generates a unique
gradient vector∇f of dimension L. Conversely, for any vector v of
dimension L, what condition it should satisfy so that it is a gradient
field of some image f on an M × N grid? Such condition is the
so-called network flow constraints [2], i.e., the directed sum of the
gradient fields along the edges of any closed loop in the grid is 0. It is
actually sufficient to choose only the closed loops consisting of unit
squares (see Fig. 1). Since there are (M − 1)(N − 1) unit squares
in the whole image, we obtain (M − 1)(N − 1) linear constraints,
which can be presented in terms of a network flow matrixA below.

Definition 2 For a vector v of dimension L, v satisfies the network
flow constraints ifAv = 0.

When φ satisfies the continuity condition, the true phase value
φ can be restored up to a global constant. Indeed, by computing
gradients in (1) and then omitting the indices, we obtain ∇ψ =
∇φ− 2π∇k. Thus

(∇φ)W = (∇ψ)W . (3)

Whenφ satisfies the continuity condition, the above formula implies
that ∇φ = (∇ψ)W since |∇φ| < π componentwise, i.e., the gra-
dient field ∇φ is simply the wrapped part of ∇ψ. After restoring
∇φ, we can recover φ from∇φ up to a global constant.

However, the continuity condition can not hold in general in
many applications. The rapid change in the observed data, or the

noise contamination can easily invalidate the continuity assumption.
If this happens, both (∇ψ)W and (∇ψ)D may violate the network
flow conditions, and thus are even not legitimate gradient fields.
Therefore, the reconstruction ofφ using (∇ψ)W as its gradient field
is not well-founded.

There are various methods of estimating ∇φ by compensating
(∇ψ)W using the network flow constraints. A representative ap-
proach is the so-called Lp-norm phase unwrapping [3], which aims
to find a gradient field∇φ that satisfies the network flow constraints
and also has the closest Lp-distance to (∇φ)W . This leads to the
following mathematical formulation:

min
∇φ

∣∣∣∣∣∣∇φ− (∇ψ)W
∣∣∣∣∣∣

p
(4)

s.t. A∇φ = 0,

whereA enforces the network flow conditions on∇φ, and∣∣∣∣∇φ− (∇ψ)W
∣∣∣∣

p

def
=

(∑L
�=1

∣∣(∇φ)� − (∇ψ)W�
∣∣p)1/p

.

3. MAXIMUMA POSTERIORI PHASE UNWRAPPING
WITH INTEGER CONSTRAINTS

To recover the gradient field ∇φ using (∇ψ)W , a multiple of 2π
needs to be compensated on (∇ψ)W for those components in ∇φ
which do not satisfy the continuity condition (i.e., are out of the
range of (−π, π]). In fact, it is easy to see that

∇φ − (∇ψ)W = 2π
(
∇k + (∇ψ)D

)
, (5)

which implies that∇φ− (∇ψ)W are integer multiples of 2π. In the
Lp-norm phase unwrapping approach described in (4), due to the
lack of integer constraints, the compensated quantity∇φ− (∇ψ)W

may not be integer multiples of 2π, which leads to inaccurate quanti-
ties compensations to (∇ψ)W . This results in inaccurate estimation
of ∇φ. In the sequel, we propose a new formulation of 2-D phase
unwrapping. We assume a Gaussian prior on the gradient field ∇φ,
and adopt integer constraints to reflect that fact that ∇φ − (∇ψ)W

are integer multiples of 2π.

3.1. Maximum a Posteriori Formulation

We assume a Gaussian prior on ∇φ, i.e., the L = 2N(N − 1)
elements of ∇φ have a joint Gaussian distribution with zero mean
and covariance Ω. The pdf of∇φ is thus:

f∇φ(∇φ) =
1√

(2π)L det(Ω)
exp

(
− (∇φ)T Ω−1∇φ

2

)
. (6)

Our goal is to estimate ∇φ from ψ, or from ∇ψ. Because
(∇φ)W = (∇ψ)W (see (5)), our remaining task is to estimate
(∇φ)D. We can actually obtain the prior distribution of (∇φ)D

using the distribution of ∇φ. Thus, treating (∇φ)D as the parame-
ter to be estimated, we are able to derive the maximum a posteriori
(MAP) estimator of (∇φ)D based on∇ψ.

It can also be shown that given (∇ψ)W , (∇ψ)D is determin-
istic, by using the fact that ψ ∈ (−π, π]. Thus, we can formu-
late our estimator of (∇φ)D based on (∇ψ)W only. Since ∇φ =
(∇φ)W + 2π(∇φ)D and (∇φ)W = (∇ψ)W , we obtain that:

f(∇ψ)W ,(∇φ)D (x,d) = f∇φ (x + 2πd)

=
1√

(2π)L det(Ω)
exp

(
− (x+ 2πd)T Ω−1(x+ 2πd)

2

)
. (7)
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We thus obtain that the MAP estimator of (∇φ)D can be obtained
by solving

min
(∇φ)D

∣∣∣∣∣∣(∇ψ)W + 2π(∇φ)D
∣∣∣∣∣∣

Ω−1

s.t. A
(
(∇ψ)W + 2π(∇φ)D

)
= 0; (8)

(∇φ)D ∈ Z
L

where (∇ψ)W is a data matrix computed from the measured phase
values ψ, and for a vector v, ||v||Ω−1

def
= vT Ω−1v. We can write

the first constraint as:

A(∇φ)D = A(∇ψ)D,

sinceA
(
(∇ψ)W + 2π(∇ψ)D)

= A(∇ψ) = 0.

3.2. Binary Integer Constraints

Solving (8) involves an integer constraint on (∇φ)D . This is the
major difficulty in the numerical implementation. In fact, the inte-
ger constraints (∇φ)D ∈ Z

L makes the resulting problem NP-hard.
Thus, a relaxation method is needed when one tries to devise a com-
putationally efficient approach to solve (8). Theoretically (∇φ)D

can take any integer values since it is the integer part of the Gaussian
distributed random variable ∇φ. To reduce complexity, we approx-
imate (8) by restricting the values that each component (∇φ)D can
take.

We consider the case that the phase shift is mild, i.e., (∇φ)� ∈
(−2π, 2π) for all 1 ≤ � ≤ L in this work. More general cases
such as (∇φ)� ∈ (−Rπ,Rπ) for all 1 ≤ � ≤ L, for a given
R > 2, will be investigated in an expanded version of this work.
Technically, we ignore the low probability events of either when
(∇φ)� ∈ (−∞,−2π] or (∇φ)� ∈ (2π, +∞). With such assump-
tions, we obtain that{

(∇φ)D
� ∈ {−1, 0} if 0 ≤ (∇φ)W� ≤ π ;

(∇φ)D
� ∈ {+1, 0} if − π < (∇φ)W� < 0

since (∇φ)� = (∇φ)W� + 2π(∇φ)D
� .

Let us further introduce a matrix S
def
= diag([s1, s2, . . . , sM ])

where {
s� = −1 if 0 ≤ (∇φ)W ≤ π ;

s� = 1 if −π < (∇φ)W < 0,

We also introduce new variables z = S
[
(∇φ)D]

and As = AS.
Then we obtain that z� ∈ {1, 0} for all �, and (8) is transformed
into a binary quadratic minimization problem in the new variable z
below:

min
z

∣∣∣∣∣∣(∇ψ)W + 2πSz
∣∣∣∣∣∣

Ω−1

s.t. Asz = A(∇ψ)D, (9)
z� ∈ {0, 1}; 1 ≤ � ≤ L.

3.3. Solution Using the Semidefinite Relaxation

We next solve (9) using the semidefinite relaxation approach de-
cribed in [14, 15]. The standard problem discussed in those two
papers are

min
x

||y −Hx||2 (10)
s.t. x� ∈ {−1, 1}; 1 ≤ � ≤ L.
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Fig. 2. Unwrapping performance comparison (plots are true phase;
wrapped phase, unwrapping by L2-norm approach, unwrapping by
L1-norm approach, and unwrapping by SDR approach respectively).

To transform the problem in (9) into the standard form in (10),
we first penalize the equality constraint Asz = −A(∇ψ)D by
adding into the objective function a quadratic term

∣∣∣∣Asz + (∇ψ)D∣∣∣∣2
multiplied by a multiplier λ and obtain:

min
z

∣∣∣∣∣∣(∇ψ)W + 2πSz
∣∣∣∣∣∣2

Ω−1
+ λ

∣∣∣∣∣∣Asz −A(∇ψ)D )
∣∣∣∣∣∣2

s.t. z� ∈ {0, 1}; 1 ≤ � ≤ L.

We further introduce

H
def
=

1

2
P1/2, y

def
= −P−1/2

(
1T P + bT

)
, (11)

where

P
def
= 4π2Ω−1 + λAT A,

b
def
= 2π

[
(∇ψ)W

]T

Ω−1S− λ
[
(∇ψ)D

] T

AT A.

With the transformations in (11), we have reformulated the bi-
nary quadratic minimization problem (9) in the standard form (10).
In next section, we use the numerical solver provided in [15] to solve
(10) withH and y given in (11).

4. NUMERICAL EXPERIMENTS

This section presents numerical results to validate our proposed
phase unwrapping algorithm1. For simplicity, we choose Ω to be an
identity matrix. In the first experiment as shown in Fig. 2, we choose
a Gaussian pdf shaped phase image with N = 128. The number
of edges with discontinuity (i.e., along which the unwrapped phase
data is not continuous, and thus a non-zero amount of compensation
is needed to recover∇φ from (∇ψ)W ) is 1004, around 3.09% from
the 32512 edges in the whole image. It is clear that our proposed
SDR phase unwrapping approach with integer constraints can accu-
rately estimaste the true phase φ from ψ, while both the L1-norm
and L2-norm approaches fail to recover the true phase data at places
where discontinuity exists.

We have implemented the L1-norm, L2-norm, and the SDR
phase unwrapping approaches in Matlab 7.0 using a Quad Core In-
tel 2.4 GHz desktop PC. They take 6.19, 9.18, and 14.03 seconds
respectively to unwrap the phase image in Fig. 2.

1Due to space limit, we only provide examples based on computer simu-
lated data. Additional results on unwrapping synthetic aperture radar imaging
data will be provided in an expanded version of this paper.
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Fig. 3. Histogram of gradient compensations.

The analysis of why the SDR approach performs better is given
in Fig. 3. Note that the ambiguity amount always takes integer mul-
tiples of 2π. As can be seen from Fig. 3, the SDR approach correctly
compensates the integer amount of ambiguity, while both L2-norm
and L1-norm approaches incorrectly compensated fractional phase
values due to the lack of integer constraints. To further study the
robustness of our approach, we plot in Fig. 4 the MSE performance
of these three approaches on phase images with different qualities.
The underlying data is of Gaussian shape, but its height is adjusted
to obtain different percentages of edges with discontinuity. As can
be seen, our SDR approach outperforms both the L2-norm and L1-
norm approaches with a large margin when the percentage of edges
with discontinuity is within a reasonable region (below 5%).
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Fig. 4. MSE (per pixel) vs. percentage of edges with discontinuity.

Another example with more complicated shape (to simulate part
of a terrain) is given in Fig. 5. We choose N = 86 and the phase
image φ of the shape of the superposition of two symmetric Gaus-
sian pdf skewed by a Gamma distribution. The results again clearly
demonstrate that our SDR approach outperforms the L1-norm and
L2-norm phase unwrapping methods. The computation time for the
L2-norm, L1-norm, and the SDR approaches is 5.69, 8.37, and 2.87
seconds respectively.
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