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ABSTRACT
A band clustering and selection approach based on a hyper-

spectral measure, spectral information divergence (SID) is

presented in this paper. Hyperspectral image data is analyzed

for target detection. Hyperspectral image data and spectral

signatures of the targets are used to measure the SID. Vir-

tual dimensionality (VD) is used to select optimal number of

bands. For endmember extraction, vertex component analysis

(VCA) is used. For decision fusion a new approach based on

spectral discriminatory entropy (SDE) is proposed. A com-

parative study is conducted to show the effectiveness of new

approach of band clustering and selection. Decision fusion

is also compared with full band and individual SID detection

schemes.

Index Terms— Hyperspectral image, remote sensing,

band clustering, bands selection, decision fusion, endmember

detection

1. INTRODUCTION

Hyperspectral remote sensors collect image data simulta-

neously in dozens or hundreds of narrow, adjacent spectral

bands. These measurements make it possible to derive a

continuous spectrum for each image cell. Hyperspectral data

enables the analyst to detect more materials, objects and re-

gions with more accuracy than previously possible. Where

more information is carried by hundreds of bands of hyper-

spectral image data, there is a challenge of redundancy for

analysis of hyperspectral image data. There is likely to be

redundant among bands. Some bands may contain less dis-

criminatory information than others. Dimension reduction is

one way to overcome these problems. Methods of dimen-

sionality reduction can be divided into two categories, feature

extraction (based on transformation) [1] and band or feature

selection. In hyperspectral imaging, feature or band selection

is preferable to feature extraction for dimensionality reduc-

tion because of two main reasons [2]. First, feature extraction
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needs the whole (or most) of the original data representa-

tion to extract new features, forcing to obtain and deal with

the whole initial representation of the data. Secondly, when

dealing with physical measures that are represented in the hy-

perspectral image domain, critical information may have been

compromised and distorted because the data are transformed.

Band selection has the advantage of preserving the relevant

original information from the data [3]. In the past, many

band selection techniques have been proposed [4, 5]. These

methods can be roughly categorized into four groups [3],

Search-based Methods [5, 4], Transform-based Methods [6],

ICA-based Band Selection [7], and Information-based Meth-

ods [5, 3].

A hyperspectral pixel is generally a mixture of different

materials present in the pixel with various abundance frac-

tions. These materials absorb or reflect within each spec-

tral band. As a consequence, spectral characterization be-

comes crucial in hyperspectral image analysis. However, be-

cause of atmospheric effects, the spectral information of a

pixel varies during data acquisition. We use an information-

theoretic spectral measure, SID, to account for spectral sim-

ilarity for band clustering. Bands are clustered using SID of

data and target signatures. Hierarchical structure is used for

clustering by using two linkage strategies, nearest neighbor

(also called single link) and average. Finally once the bands

are clustered, there is a need of some criteria for selection of

band from each cluster. For this, we pick the bands having

maximum SID from each cluster. A new concept of virtual

dimensionality (VD) [8] is used for the estimation of mini-

mum number of bands for preserving maximum information.

For each technique vector component analysis (VCA) [9] is

used for unmixing of the hyperspectral image.

Materials do not have maximum discriminatory probabil-

ity within same bands therefore a single band clustering and

selection technique is not effective for multiple targets. To

over come this problem multiple techniques are used for band

clustering and selection. For each technique same method

is used for endmember extraction. Finally the decision fu-

sion criteria is defined using spectral discriminatory entropy
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(SDE) [10, 11].

The organization of the paper is as follows. Section 2

develops new approach for clustering based band-selection.

Section 3 describes the decision fusion technique. Experi-

mental results are given in section 4. We conclude the paper

in last section 5.

2. BAND CLUSTERING AND SELECTION BASED
ON SID

Each band image of hyperspectral image contains valuable

spectral information that can be used to account for pixel

variability and similarity. Spectral Information Divergence

(SID) [10, 11] is a measure of the similarity between two

random vectors (band images). It measures the probabilistic

discrepancy between two corresponding spectral signatures.

The purpose of clustering is to group the band images such

that the intracluster SID variance is minimum and intercluster

SID variance is maximum. Let {Xk}L
l=1 be all band images in

hyperspectral image cube and L is the total number of bands.

Assume that p(X) and q(Y) are the probability mass functions

of band image vectors X and Y. N is the size of each band

image vector. Then SID is defined as:

SID(X, Y ) =
N∑

i=1

p(xi)log
p(xi)
q(yi)

+
N∑

i=1

q(yi)log
q(yi)
p(xi)

(1)

Where
∑N

i=1 p(xi)log(p(xi)
q(yi)

) is the relative entropy or Kull-
back Leibler distance between p(X) and q(Y). From above a

similarity vector Y = {yi}L(L−1)/2
i=1 of length L(L − 1)/2 is

obtained. Based on similarity measures, the linkage is created

among the L(L− 1)/2 elements of Y for creating the hierar-

chical structure. For hierarchical clustering tree, the following

methods are used:

• Average linkage uses the average distance between all

pairs of objects in any two clusters, defined as

d(i, j) =
1

ninj

ni∑

r=1

ns∑

s=1

|xir − xjs| (2)

Where ni and nj is the number of objects in ith and

jth clusters.

• Single linkage or nearest neighbor, uses the smallest

distance between objects in the two clusters, defined as

d(i, j) = min(|xik, xjk|) (3)

Where iε{12, ...ni}, jε{1, 2, ...ni}
Using the above similarity measurement methods and hierar-

chical clustering tree methods we get following two ways to

cluster the bands. Hierarchical tree is constructed with aver-

age linkage and nearest neighbor by using SID of hyperspec-

tral image for similarity measure. They are termed as SIDDA

and SIDDS respectively. We also construct hierarchical tree

using SID of target signatures for similarity measure. They

are termed as SIDSA and SIDSS respectively.

In the following, we propose an algorithm for clustering

band selection.

1. Calculate VD (number of bands);

2. Calculate SID for each band image ;

3. Group the band images into a binary hierarchical clus-

ter tree using distances among each SID values to de-

termine the proximity of band images to each other;

4. Prune branches off the bottom of the hierarchical tree

according to the value of VD and assign all the objects

below each cut to a single cluster;

5. Pick one band having maximum SID from each cluster.

3. DECISION FUSION

Materials do not have maximum discriminatory probability

within the same band, therefore a single band clustering and

selection technique is not effective for multiple targets. To

over come this problem multiple techniques are used for band

clustering and selection and for each technique same method

is used for endmember extraction. Assume S = {si; i =
1, 2, . . . K} is spectral library of K spectral signatures. If t is

the target and m(si, sj) is the spectral measure (SID) among

signatures si and sj , power of a band selection technique is

define as

RSDPm(si, sj ; t) = max{m(si, t)m(sj , t)
m(sj , t)m(si, t)

} (4)

If for a target t, the SDE of a band selection technique is low

then there is a better chance to identify the target. SDE is

SDEm(S; t) = −
K∑

k=1

pm
S,t(k) log pm

s,t(k) (5)

where pm
S,t is the discriminatory probability mass function

of signatures S with respect to target t.

pm
S,t(i) =

m(si, t)∑K
i=1 m(si, t)

, for i = 1, 2, . . .K (6)

Decision fusion is conducted on the basis of maximum

value SDEm of the band selection technique. The algorithm

steps for decision fusion are described below

1. Get the selected bands of each band clustering and se-

lection technique;

2. Compute SDEm of each band clustering and selection

technique for each target and select the technique with

maximum SDEm for each target;
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Fig. 1. Ground Truth of spatial positions of four pure pixels

corresponding to following minerals: Alunite (A), Budding-

tonite (B), Calcite (C), and Kaolinite

Table 1. Selected bands using different techniques
Criteria Selected bands

SIDDA

26, 20,183, 186, 4, 6,176, 168, 33, 40, 14, 10, 67,

148, 1, 2,180, 135, 16,187, 188, 189

SIDDS

181, 182, 15, 6, 138, 176, 16, 180, 17, 18, 4, 183,

136, 184, 185, 2, 3, 186, 1, 188, 187,189

SIDSA

146, 7, 1, 2, 175, 174, 177, 177, 183, 181, 139, 14,

151, 101, 135, 161, 152, 173, 159, 160, 189,163

SIDSS

158, 154, 160, 152, 151, 168, 163, 2, 174, 173,

177, 177, 1, 162, 161, 176, 175, 153, 159, 181,

183, 189

3. Get results of VCA for each band clustering and selec-

tion technique;

4. Send output of the technique whose SDEm is maxi-

mum for a particular target.

5. Pick one band having maximum SID from each cluster.

4. EXPERIMENTAL RESULTS

For a comparative study of proposed algorithm, a well-

known Airborne Visible and InfraRed Imaging Spectrometer

(AVIRIS) Cuprite image scene is used as shown in Fig. 1. It is

available online [12] and was collected by 224 spectral bands

with 10-nm spectral resolution over the Cuprite mining site,

Nevada, in 1997. The selected image scene for experiments

shown in Fig. 1 has a size of 350 × 350 pixels and is well

understood mineralogically. Water absorption and low SNR

bands 1-3, 105-115, and 150-170 have been removed prior to

the analysis. The ground truth also provides the spatial lo-

cations of the four minerals Alunite (A), Buddingtonite (B),

Calcite (C), and Kaolinite (K) which are encircled and labeled

‘A’, ‘B’, ‘C’ and ‘K’ respectively. These minerals can be used

to verify endmembers extracted by an endmember extraction

algorithm VCA. US Geological Survey (USGS) signatures of

these four minerals are also shown in Fig. 2. The number of

bands required to preserve maximum information, estimated

by VD (with false alarm probability Pf = 10−4), is 22.
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Fig. 2. USGS spectral signatures of Alunite (A), Budding-

tonite (B), Calcite (C), and Kaolinite (K)

Fig. 3 shows the four endmembers extracted by VCA us-

ing full bands and data fusion of multiple band clustering and

selection techniques using the bands tabulated in Table 1. The

extracted endmembers are labeled ‘a’, ‘b’, ‘c’, ‘k’. For com-

parison, ground truth endmember pixels are labeled as ‘A’,

‘B’, ‘C’, ‘K’. Further more to get more details and to measure

the spectral similarity among detected endmember pixels and

the ground truth endmember minerals, spectral angle mapper

(SAM) results are tabulated in Table 2. In Table 2 the coor-

dinates included in the brackets for both ‘a’, ‘b’, ‘c’, ‘k’ and

‘A’, ‘B’, ‘C’, ‘K’ indicate the locations in the image scene.

Results shows that the performance of proposed clustering-

(a) (b)

Fig. 3. Four endmember extracted by VCA using (a) Full Bands

and (b) Decision Fusion

based band selection technique is better than full bands. All

the endmember pixels are detected very well and have better

spectral similarity values. Further more among our four sub-

methods, the best one is SIDSA. Data fusion gives optimal

detection as compared to any individual submethod.
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Table 2. Spectral similarity measurements (SAM) among

found endmembers and the ground truth endmembers
A

(161,61)

B (234,

209)

C

(298,22)

K (298,

22)

Full Band

a (19,120) 0.0987 0.0973 0.1504 0.1300

b (172,176) 0.2022 0.0828 0.0468 0.2142

c (95,284) 0.1986 0.0868 0.0332 0.2033

k (157,64) 0.1043 0.1734 0.2165 0.0899

SIDDA

a (304,23) 0.0398 0.1588 0.2070 0.0847

b (161,60) 0.1324 0.0562 0.0838 0.1475

c (232,126) 0.2301 0.1047 0.0599 0.2475

k (161,199) 0.1040 0.1787 0.2215 0.0348

SIDDS

a (146,18) 0.0823 0.2147 0.2578 0.1136

b (292,174) 0.1913 0.0690 0.0632 0.1942

c (226,1456) 0.2051 0.0783 0.0590 0.2065

k (113,267) 0.0798 0.1527 0.1878 0.0402

SIDSA

a (161,62) 0.0000 0.1576 0.2038 0.0961

b (146,18) 0.1412 0.0583 0.0827 0.1541

c (288,92) 0.1913 0.0690 0.0632 0.1942

k (226,145) 0.0798 0.1527 0.1878 0.0402

SIDSS

a (18,124) 0.0674 0.1137 0.1653 0.0999

b (149,16) 0.1412 0.0583 0.0827 0.1541

c (288,92) 0.2124 0.0923 0.0320 0.2180

k (238,74) 0.0938 0.1379 0.1693 0.0472

Decision Fusion

a (161,62) 0.0000 0.1576 0.2038 0.0961

b (161,60) 0.1324 0.0562 0.0838 0.1475

c (288,92) 0.2124 0.0923 0.0320 0.2180

k (161,199) 0.1040 0.1787 0.2215 0.0348

5. CONCLUSION

Experiments conducted with AVIRIS data set reveal that

SIDSA is a better technique of dimension reduction of hyper-

spectral data for unmixing as well as for detection. SIDSA

clusters the bands in such a way to keep intra-cluster SID

variance minimum and inter-cluster SID variance maximum.

It takes only seconds ,not hours, for band clustering and se-

lection. Our proposed data fusion scheme based on SDE is

indeed a promising target detection technique. Its perfor-

mance is better than all individual target detection schemes.
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[3] A. Martı́nez-Usómartinez-Uso, F. Pla, J. M. Sotoca,

and P. Garcı́a-Sevilla, “Clustering-Based Hyperspec-

tral Band Selection Using Information Measures,” IEEE
Transactions on Geoscience and Remote Sensing, vol.

45, pp. 4158–4171, Dec. 2007.

[4] G.M. Petrie, P.G. Heasler, and T. Warner, “Optimal band

selection strategies for hyperspectral data sets,” Geo-
science and Remote Sensing Symposium Proceedings,
1998. IGARSS ’98. 1998 IEEE International, vol. 3, pp.

1582–1584, July 1998.

[5] P. Groves and P. Bajcsy, “Methodology for hyperspec-

tral band and classification model selection,” IEEE
Workshop on Advances in Techniques for Analysis of Re-
motely Sensed Data, pp. 120–128, 2003.

[6] C.-I. Chang, Q. Du, T.-L. Sun, and M. L. G. Althouse,

“A joint band prioritization and band-decorrelation ap-

proach to band selection for hyperspectral image classi-

fication,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 37, pp. 2631–2641, Nov. 1999.

[7] Hongtao Du, Hairong Qi, Xiaoling Wang, Rajeev Ra-

manath, and Wesley E. Snyder, “Band selection using

independent component analysis for hyperspectral im-

age processing,” AIPR, 2003.

[8] C.-I Chang, Hyperspectral Imaging: Techniques for
Spectral Detection and Classification, New York:

Plenum, 2003.

[9] J.M.P. Nascimento and J.M.B. Dias, “Vertex component

analysis: a fast algorithm to unmix hyperspectral data,”

IEEE Transactions on Geoscience and Remote Sensing,

vol. 43, no. 4, pp. 898–910, April 2005.

[10] Thomas M. Cover and Joy A. Thomas, Elements of In-
formation Theory, Wiley-Interscience, 1991.

[11] C.-I. Chang, Hyperspectral Imaging: Techniques for
Spectral Detection and Classification, Plenum, New

York, 2003.

[12] [Online] Available:, “http://speclab.cr.usgs.gov/cuprite.html,”

.

1104


