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ABSTRACT

We demonstrate that the remarkable advantages of com-

pressed sensing remain in force when the information oper-

ator is constrained to obey the physical rules of a multistatic

SAR measurement. The design guidelines of the SAR in-

formation operator for �2 reconstructions is compared to

those provided for generic �1 reconstructions. We report little

or no degradation in compression performance when using

an information operator obeying SAR sampling constraints.

Simulations for a Shepp-Logan image show an image is

faithfully reconstructed when the number of measurements is

about a third of the number of image pixels, using a minimum

total-variation technique. We observed high sensitivity in per-

formance and algorithm convergence to small perturbations

in the measurement vectors.

Index Terms— Multistatic synthetic aperture radar, radar

tomography, compressed sensing

1. INTRODUCTION

Using the well-known results of compressed sensing (CS)

[1, 2], an image can be reconstructed from projections of the

image onto several basis functions. Remarkably, if the image

is sparse enough in any known set of basis vectors, then the

number of projections m required to reconstruct the image is

substantially less than the number of pixels n in the image.

Conditions on the the m projection vectors (which when

taken together form an information operator) for reconstruc-

tion methods to be successful were formally developed by

Donoho [2] and others. For large enough problems, there

are plenty of feasible information operators. In particular, an

m × n matrix of independent, identically-distributed (i.i.d.)

random entries is overwhelmingly likely to provide the neces-

sary reconstruction information, so long as m is large enough

compared to the sparsity of the image’s representation. In

cases where known random projections are physically easy to

measure, this property is a very useful result.

However, not all physical measurements can be thought

of as random projections of this type. In [3], we developed

a measurement framework and reconstruction technique for

the multistatic synthetic aperture radar (SAR) image problem,

for both deterministic and stochastic vehicle trajectories, in

which the measurement process is also modeled as m projec-

tions of an n-pixel image. Under the SAR physical sampling

model, each projection vector is necessarily quite sparse and

contains significant correlations from index to index. Thus,

we set up a problem under CS in which not only the image,

but also the information operator, is assumed to be sparse.

In our previous work, we assumed that m > n and solved

the resulting maximum likelihood problems by minimization

in �2. The central focus of the present work is to determine

whether, in cases where m < n, the principles of CS and

�1 reconstruction remain useful under the non-random physi-

cal constraints placed on SAR multistatic measurements. We

shall demonstrate that they do.

The paper is organized as follows. In section 2, we re-

view the basic framework of the SAR measurement process

and translate the problem in to the language of the CS infor-

mation operator. In section 3 we discuss the design of the

information operator for �2 reconstructions and contrast these

principles with those provided by Donoho for �1 reconstruc-

tions. Section 4 gives results for a Shepp-Logan image sim-

ulation in which the image is faithfully reconstructed when

m is about a third of n using a minimum total-variation tech-

nique. Section 5 is a discussion of the advantages particular

to multistatic SAR for CS and the effects of its practical im-

pediments such as noise. Section 6 contains final remarks.

2. BACKGROUND

The SAR measurement framework used here is a version of

the approximate inverse, developed for downlooking multi-

static SAR in [4]. These results can be briefly summarized as

follows.

In one transmission burst, an omnidirectional, bistatic re-

ceiver/transmitter pair, over a flat plane of reflectivity function

f , generates a series of measurements which are the line inte-

grals of f over an expanding set of ellipses. The geometry of

these ellipses depend on the coordinates of the UAVs above

the plane. A typical example of these sampling ellipses (Fig-

ure 1) shows several measurement ellipses generated during

a single transmit burst between a bistatic pair. Each ellipse is

the locus of points, in the reflectivity plane, for which photons

leaving the transmitter and gathered at the receiver have trav-

eled an equal distance. The physical measurement (that is,
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Fig. 1. A representative example of four ellipses of integra-

tion, each representing a row of the matrix A. The light

dotted curves represent contours of some reflectivity function

f(x, y).

the signal strength at the receiver at a particular instant cor-

responding to a given ellipse) is modeled as the line integral

of the reflectivity function f(x, y) around the ellipse. That

measurement is an element of the measurement vector re.

Using the simplest possible discretization of f(x, y), the

function f(x, y) is approximated by a checkerboard function

f̂(x, y), which is constant within each grid cell, and whose

value within that cell is specified by an element of the vec-

tor f̂ . In such a case, an approximation of the line integral

is the sum of f̂jAij , where Aij is the segment length of the

ith sampling ellipse passing through the jth grid cell corre-

sponding to f̂j . By setting this approximation of the line inte-

gral to be equal to the corresponding radar measurement in re,

for many measurement ellipses arising from (possibly) many

such bistatic pairs, the SAR measurement process is simply

described as

A f̂ = re, (1)

where A comprises the known Aij values and is an m-

measurement by n-pixel measurement matrix, f̂ is an n-pixel

vector of unknown pixels comprising the image, and re is the

known measurement vector of length m. Each component

of re measurement vector is therefore a projection of f onto

the rows of A. If the measurement noise in each element of

re can be thought of as i.i.d. Gaussian disturbances, then a

maximum likelihood estimate of the values f̂ is the standard

least-squares solution

f̂ML = (ATA)−1 AT re (2)

= A+re (3)

= VΣ+UT re (4)

where A+ is the pseudoinverse of A, U and V are orthog-

onal matrices, and Σ+ is a diagonal matrix whose elements

are given by the reciprocals of the singular values on the di-

agonal of the matrix Σ in the singular value decomposition

A = UΣVT . When m > n, this solution is the standard �2
minimal solution for error. If m < n, then the solution form

becomes the pseudoinverse, giving the minimum-�2 solution

for f̂ .

3. INFORMATION OPERATORS

The matrix A has the precise form of a CS information opera-
tor. In standard CS, the matrix A is often assumed to be dense

and possess random i.i.d. entries. Donoho proves that infor-

mation operators so constructed are very likely to be suitable

for compressed sensing [2].

In the present work, we shall focus on “random sampling”

SAR trajectories [3], in which the locations of the unmanned

aerial vehicles (UAVs) comprising the trajectories are ran-

domly chosen above the reflectivity plane. Under our SAR

measurement framework, what we call “random sampling”

always describes a physical line integral over an ellipse in the

plane with a random location within the image area. Because

this is a line integral over an area, the corresponding projec-

tion is itself quite sparse. The sparsity is inversely propor-

tional to the number of pixels n. Furthermore, the non-zero

elements of each projection vector are correlated, such that

the information operator is not i.i.d. even though the physical

locations may be random. Thus, the resulting operator A for

SAR applications is neither i.i.d. nor dense. We name such

operators SAR/CS information operators.
In [3] we showed that the best design for the matrix A,

when m > n and �2 minimization is used for reconstruction,

is that A should obey a modified Welch bound condition; that

is, that the columns of A are orthogonal and furthermore have

equal energy. Equivalently, we may say that the columns of

good �2-reconstruction A matrices form a tight frame for the

subspace of R
m spanned by those columns. We showed that

while it is not strictly possible to design such matrices under

the physical constraint of the SAR system, except in impracti-

cal degenerate cases, it is possible to develop useful trajectory

design guidelines which approximate this condition for A.

The following argument supports the expectation that the

�2 tight-frame condition may also help to guarantee CS sparse

reconstruction. When m < n, the same trajectory guidelines

tend to make the columns of A approximate a tight frame for

all of R
m. Donoho does not explicitly demonstrate that in-

formation operators Ψ, which themselves constitute a tight

1098



frame, are guaranteed to meet his conditions; however, he

notes that the multiple of Ψ, ΦΨT , does meet these condi-

tions if (and we suggest only if) Φ does. Letting Φ equal Ψ,

we have ΨΨT = αIm for tight frames, which is clearly a

good (if trivial) information operator for a problem in Rm.

Now following the argument in reverse direction, we can ex-

pect that the original Ψ to meet his conditions because it is a

tight frame.

Donoho’s conditions (CS1-CS3) on the information op-

erator ensure, among other things, that good �1 reconstruc-

tion A matrices possess a degree of linear independence be-

tween small groups of columns, and that linear combinations

of small groups of columns must look something like noise.

Further, direct comparison of these conditions to SAR/CS op-

erators is beyond the scope of the present work.

4. RESULTS

The signature feature of CS reconstruction is that the number

of projections m required to faithfully reconstruct a sparse im-

age can be substantially less than the number of pixels n. The

now-standard method of basis pursuit [5], for example, can

reconstruct a sparse image by finding that x with minimum

�1 norm which is consistent with the measurement informa-

tion Ax = r.

To demonstrate whether the advantages of CS survive

SAR’s physical sampling constraints in a good trajectory, we

follow [6] in which Shepp-Logan phantom images are recon-

structed by minimizing the gradient or total variation (TV) in

an image under the information-operator constraint Ax = r.

In continuous-function language, this is a minimization of the

objective function

∫ ∫
||∇f ||1dxdy (5)

under the constraint that f must be exactly consistent with

the projection information. The Shepp-Logan and other artifi-

cial piecewise-constant phantoms are particularly well suited

(perhaps, too well suited) to this technique because their gra-

dients are even more sparse than the image itself. We used

the very useful software package “�1−magic” of Candés and

Romberg [7] to generate a minimum-TV reconstruction from

a random-location SAR A matrix and its projections r. Be-

cause there is no measurement noise in this simulation, we

used the minimum TV with equality constraints version of �1
reconstruction.

Figure 2 shows the results for a 75 × 75 image, using 25

randomly-located bistatic transmit events, generating a total

of 1765 measurements; here, A is a 1765× 5625 matrix. For

comparison purposes, the minimum-�2 reconstruction from

the standard pseudoinverse is shown. The minimum-TV re-

construction is visually indistinguishable from the original

image, indicating that CS concepts can remain in force de-

Fig. 2. Noiseless minimum-�2 norm reconstruction (right)

and minimum-TV reconstruction (left) for a 75 × 75 = 5625

pixel image and m = 1765 random-location SAR measure-

ments.

spite the sparsity and correlations of the information operator

A, enforced by the physical constraints of the SAR system.

The previous result gave good reconstruction when the

number of measurements was roughly a third of the number

of pixels in the image. We have generally found this relation-

ship to be consistent at various image resolutions. Figure 3

shows the standard deviation of the difference between the re-

constructed and perfect image, versus the number of noiseless
measurements m, for an n = 2500 pixel image. Reconstruc-

tion performance is shown for the random SAR/CS operator,

and for a standard random Gaussian operator of the same size.

As expected, there is little or no degradation in the efficacy of

the random SAR/CS operator when compared to that of the

standard operator.

The data demonstrates that performance begins to degrade

markedly when the number of measurements is less than a

third of the number of pixel images. We hasten to point out,

however, that such a breakpoint depends strongly on the test

image and its sparsity (and the sparsity of its gradient) and

is not expected to remain constant for all images of practical

interest.

5. NOISE AND SAR/CS

The driving potential of CS in multistatic SAR is for marked

reductions in the required number of measurements. These

gains can translate into reduced transmit/receive power con-

sumption; less demanding communication bandwidths be-

tween the unmanned aerial vehicles (UAVs) and the central

processing location; and a higher level of security in covert

applications. However, measurement disturbances and noise

are an important impediment in practical SAR systems which

highlight particular problems for �1-constrained reconstruc-

tions, and which must be overcome.

The standard �2 solutions of equation 4 give a very sim-

ple, proportional relationship between the measurement noise

power and the average pixel noise power [8]. Of course, CS
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Fig. 3. Pixel error versus the number of measurements for an

n = 2500 image for SAR/CS and for a standard CS informa-

tion operator. The image has unity scale.

works best without measurement noise, which can markedly

erode its gains, as in [9]. In our case, we found the recon-

struction and convergence performance of the minimum-TV

algorithm to be very sensitive to small additive disturbances in

the projections; so sensitive, in fact, that a direct comparison

of noise performance between the �1 and �2 methods is not

meaningful. Problems persist even when the disturbances are

4 or 5 orders of magnitude smaller than the maximum mea-

surement magnitude. Undoubtedly, this behavior is due to the

use of equality constraints in the minimum-TV algorithm.

Alternative methods for sparse reconstruction in the pres-

ence of noise is a current topic of research, e.g. [10]; some

methods are already available. An alternative reconstruction

method, minimum TV with quadratic constraints, could be

used to find the minimum-TV f such that the sparse solution

is within some distance being consistent with the measure-

ments, as measured by the �2-norm. Such research will un-

doubtedly be applicable for numerical solutions to the noisy

SAR problem using CS techniques.

6. CONCLUSIONS

We have demonstrated that the use of a UAV trajectory (a

random-location trajectory), shown to be nearly optimal for

�2 reconstruction when the number of measurements exceeds

the number of pixels, also give excellent �1 reconstruction un-

der noiseless conditions when m ≈ 1
3n for the Shepp-Logan

phantom. There appears to be little or no degradation in com-

pressibility performance when using the SAR/CS operator,

compared to a standard CS information operator.

The current paucity of analytic performance tools for

CS-related reconstruction methods (such as those tools from

standard linear algebra used for the �2 methods) will make

it more challenging to directly develop trajectory guidelines

for the SAR problem using CS reconstructions, if, indeed,

such guidelines are different than those derived for �2. Our

results suggest that the design guidelines for SAR trajectories

for �2 solutions produce information operators which, if not

optimal, at least produce serviceable �1 reconstructions.

Future work in this area could include an in-depth com-

parison of �1 and �2 information-operator design methods for

the SAR problem; a study of the image sparsity versus the

number of SAR measurements m needed to achieve a per-

formance goal under practical SAR measurement and image

conditions; and a study of the efficacy of CS reconstruction

algorithms designed to work in the presence of noise and

SAR/CS operators.
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