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ABSTRACT

Hyperspectral unmixing aims at identifying the hidden spectral sig-
natures (or endmembers) and their corresponding proportions (or
abundances) from an observed hyperspectral scene. Many exist-
ing approaches to hyperspectral unmixing rely on the pure-pixel as-
sumption, which may be violated for highly mixed data. A heuristic
unmixing criterion without requiring the pure-pixel assumption has
been reported by Craig: The endmember estimates are determined
by the vertices of a minimum-volume simplex enclosing all the ob-
served pixels. In this paper, using convex analysis, we show that the
hyperspectral unmixing by Craig’s criterion can be formulated as an
optimization problem of finding a minimum-volume enclosing sim-
plex (MVES). An algorithm that cyclically solves the MVES prob-
lem via linear programs (LPs) is also proposed. Some Monte Carlo
simulations are provided to demonstrate the efficacy of the proposed
MVES algorithm.

Index Terms— Convex analysis, Hyperspectral unmixing,
Minimum-volume enclosing simplex, Linear programming

1. INTRODUCTION

Hyperspectral imaging has emerged as an important technique in
Earth remote sensing for a wide range of applications such as ter-
rain classification, agricultural monitoring, environmental monitor-
ing, and military surveillance [1]. In hyperspectral imagery, each
observed pixel represents a mixture of more than one distinct sub-
stances due to high spectral resolution or low spatial resolution of
the airborne or spaceborne sensor used. The procedure to decom-
pose the measured spectrum of an observed pixel into a collection
of constituent spectra (or endmembers) and their corresponding pro-
portions (or abundance fractions), or simply hyperspectral unmix-
ing [2–6], is essential in identifying individual materials from a hy-
perspectral scene.

A number of hyperspectral unmixing algorithms adopt the as-
sumption of existence of pure pixels (i.e., pixels that are fully con-
tributed from a single endmember) in the observed data set. Sim-
ply speaking, those algorithms, such as PPI [2], N-FINDR [3] and
VCA [4], try to search for the purest observed pixels of the data set
as the endmember estimates. However, for the case of highly mixed
data, the pure-pixel assumption may be violated. Hence, algorithms
that do not require the pure-pixel assumption, such as alternating
projected subgradients (APS) [5] and minimum volume transform
(MVT) [6], would be appropriate for analysis of highly mixed data.
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APS solves a least squares problem with a regularization parame-
ter that controls the abundance differences between each target and
its neighbors. Furthermore, Craig [6] reported a heuristic unmixing
criterion without requiring the pure-pixel assumption, that the end-
member estimates are determined by the vertices of the minimum-
volume simplex enclosing all the observed pixels. To find such a
simplex, Craig suggested a method (i.e., MVT) that begins with a
simplex of large volume and then literally moves the simplex faces
in toward the data cloud.

In this paper, we propose a convex analysis based algorithm,
called minimum-volume enclosing simplex (MVES) algorithm, for
hyperspectral unmixing without involving pure pixels. The endeavor
of employing convex analysis is motivated by the observation that
some concepts, such as affine hull and convex hull, are naturally
a good match to the analysis of the hyperspectral unmixing prob-
lem [7]. We first perform dimension reduction of observed pixels
through affine set fitting [8], and then employ Craig’s unmixing cri-
terion [6] to formulate the hyperspectral unmixing as an MVES op-
timization problem that finds a simplex by minimizing the simplex
volume subject to the constraint that all the dimension-reduced pix-
els are enclosed by the simplex. The MVES algorithm we propose
is based on a cyclic minimization procedure, in which a sequence
of linear programs (LPs) are solved. By computer simulations, we
demonstrate that the proposed MVES algorithm is superior in per-
formance over some existing benchmark methods.

2. SYSTEMMODEL
Consider anM × N linear spectral mixing model [1]

x[n] = As[n] =
N�

i=1

si[n]ai, n = 1, . . . , L (1)

where x[n] = [ x1[n], . . . , xM [n] ]T is the nth observed pixel vec-
tor comprising M spectral bands, A = [ a1, . . . , aN ] ∈ R

M×N

denotes the signature matrix whose ith column vector ai is the ith
endmember signature, s[n] = [ s1[n], . . . , sN [n] ]T ∈ R

N is an
abundance vector comprising N fractional abundances, and L is the
total number of observed pixel vectors.

The MVES algorithm to be presented is based on the following
general assumptions [1]:

(A1) For all i = 1, . . . , N and n = 1, . . . , L, si[n] ≥ 0.

(A2) For all n = 1, . . . , L, � N

i=1 si[n] = 1.
(A3) min{L, M} ≥ N andA is of full column rank.

Assumption (A1) is true in hyperspectral imaging because inten-
sities of all the abundance vectors must be non-negative. Assump-

1089978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



tion (A2) holds true because the fractional abundances are the pro-
portional distribution of all the endmembers in every observed pixel.
Assumption (A3) is usually valid in cases where the hyperspectral
scene of interest [1] involves a large number of image pixels and
spectral bands but only a small number of endmembers.

3. SOME BASIC CONCEPTS OF CONVEX ANALYSIS
We review two convex analysis concepts, namely affine hull and con-
vex hull [9], which will be prevalently used in the ensuing develop-
ment. Given a set of vectors {a1, . . . , aN} ⊂ R

M (a set of real
M -vectors), the affine hull of {a1, . . . , aN} is defined as

aff{a1, . . . , aN} = � x =
N�

i=1

θiai ����
1

T
θ = 1, θ ∈ R

N � , (2)

where θ = [ θ1, . . . , θN ]T and 1 is an all-one vector of proper
dimension. An affine hull is an affine set, and therefore can always
be represented by

aff{a1, . . . , aN} = � x = Cα + d �� α ∈ R
P �

� A(C,d), (3)

where A(·, ·) is an affine set parameterized by some (non-unique)
full column rank C ∈ R

M×P and d ∈ R
M . Here, P is the affine

dimension which must be no more than N − 1. If {a1, . . . , aN} is
affinely independent (which means that {a1−aN , . . . , aN−1−aN}
is linearly independent), then P = N − 1.

Given a set of vectors {a1, . . . , aN} ⊂ R
M , the convex hull of

{a1, . . . , aN} is defined as

conv{a1, . . . , aN} = � x =
N�

i=1

θiai ����
1

T
θ = 1, θ � 0

� , (4)

where � stands for component-wise inequality, and 0 is an all-zero
vector of proper dimension. An idea closely related to convex hull
is simplex: A convex hull conv{a1, . . . , aN} is called a simplex if
{a1, . . . , aN} ⊂ R

N−1 and a1, . . . , aN are affinely independent.

4. MINIMUM-VOLUME ENCLOSING SIMPLEX
ALGORITHM

Now, let us introduce the MVES algorithm in this section. Under
(A2) and a consequence of (A3) that a1, . . . , aN are linearly inde-
pendent, one can easily infer from (1) that

x[n] ∈ aff{a1, . . . , aN} = A(C,d), ∀ n (5)

for some (C,d) ∈ R
M×(N−1)×R

M and rank(C) = N −1. Thus,
it is possible to recover the affine hull of a1, . . . , aN from the given
observed pixels x[1], . . . ,x[L], as stated in the following lemma:

Lemma 1. (Endmember affine set construction [8]) Under (A2)
and (A3), the observed pixel affine hull is identical to the endmember
affine hull:

A(C, d) = aff{x[1], . . . ,x[L]}. (6)
Moreover, (C,d) can be obtained from {x[1], . . . ,x[L]} by the fol-
lowing closed-form solution

d =
1

L

L�
n=1

x[n], (7)

C = [ q1(UU
T ), q2(UU

T ), . . . , qN−1(UU
T ) ], (8)

whereU = [ x[1]−d, . . . ,x[L]−d ] ∈ R
M×L, and qi(R) denotes

the eigenvector associated with the ith principal eigenvalue ofR.

Since x[n] ∈ A(C,d), we can write its affine representation as

x[n] = C x̃[n] + d, (9)

where x̃[n] is the inverse image of x[n] under (9), i.e.,

x̃[n] = C
†(x[n] − d) ∈ R

N−1, (10)

where C† = (CT C)−1CT . The affinely transformed data x̃[n] for
all n can be regarded as the dimension-reduced pixels. Substituting
(1) into (10) yields

x̃[n] =
N�

j=1

sj [n]C†
aj − C

†
d. (11)

Since � N

j=1 sj [n] = 1 [(A2)], the x̃[n] can be expressed as

x̃[n] =

N�
j=1

sj [n](C†
aj − C

†
d) =

N�
j=1

sj [n]αj , (12)

where
αj = C

†(aj − d) ∈ R
N−1 (13)

is the jth dimension-reduced endmember. The formulation given by
(12) not only reduces the computational complexity of the subse-
quent processing steps, but also stimulates us to apply the simplex
geometry concept to the dimension-reduced pixels x̃[1], . . . , x̃[L],
as stated in the following lemma.

Lemma 2. (Simplex geometry) Under (A1), (A2) and (A3),

x̃[n] ∈ conv{α1, . . . , αN} ⊂ R
N−1, ∀n (14)

and conv{α1, . . . , αN} is a simplex.
It is easy to see from (A1) and (12) that (14) is true, and the proof
of conv{α1, . . . , αN} being a simplex is done by showing that
α1, . . . , αN are affinely independent. The details are omitted here
due to space limit. Lemma 2 implies that all the dimension-reduced
pixels x̃[1], . . . , x̃[L] must be inside the simplex constructed by the
dimension-reduced endmembers αi for i = 1, ..., N . However,
there exist an infinite number of solutions of α1, . . . , αN for which
x̃[n] ∈ conv{α1, . . . , αN} is satisfied for all n. We therefore use
Craig’s unmixing criterion [6] to estimate α1, . . . , αN by finding
a simplex conv{α1, . . . , αN} that has the minimum volume and
encloses all the x̃[n]. The problem of finding an MVES can be for-
mulated as an optimization problem as follows:

min
β1,...,βN

V (β1, . . . , βN)

s.t. x̃[n] ∈ conv{β1, . . . , βN}, ∀ n,
(15)

where V (β1, . . . , βN) is the volume of the simplex
conv{β1, . . . , βN} [10], given by

V (β1, . . . , βN ) = |det(B)|/(N − 1)! (16)

where

B = [ β1 − βN , . . . , βN−1 − βN ] ∈ R
(N−1)×(N−1). (17)

Figure 1 illustrates what the MVES problem tries to solve geometri-
cally for N = 3, where the solid-line triangle is supposed to be the
optimal simplex whose area is smaller than that of any other trian-
gles enclosing all the dimension-reduced data, e.g., the dashed-line
triangle.
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Fig. 1. Scatter plot of two-dimensional dimension-reduced pixels
illustrating the MVES problem for hyperspectral unmixing.

Next, we turn our attention to solving the MVES problem (15).
We first reformulate problem (15) into a determinant maximization
problem that follows.

Any x̃[n] ∈ conv{β1, . . . , βN} can be represented by
x̃[n] = βN + Bs

′[n], (18)

where s′[n] = [ s1[n], . . . , sN−1[n] ]T � 0 and sN [n] = 1 −
1T s′[n] ≥ 0. Therefore, problem (15) is then formulated as

min
B, βN ,

s′[1],...,s′[L]

|det(B)|

s.t. s
′[n] � 0, 1

T
N−1s

′[n] ≤ 1,

x̃[n] = βN + Bs
′[n], ∀ n = 1, . . . , L.

(19)

Problem (19) is a hard problem because of the highly nonlinear,
nonconvex nature of the objective function |det(B)|, and nonlinear
equality constraints.

To describe the proposed MVES algorithm, we consider the fol-
lowing problem reformulation that will help alleviate the difficulty
in solving (19). Let

H = B
−1 ∈ R

(N−1)×(N−1), (20a)

g = B
−1

βN ∈ R
N−1. (20b)

Then s′[n] can be represented as

s
′[n] = B

−1(x̃[n] − βN) = Hx̃[n] − g. (21)

Substituting (20) and (21) into (19) yields

max
H, g

|det(H)|

s.t. Hx̃[n] − g � 0, 1
T (Hx̃[n] − g) ≤ 1, ∀ n,

(22)

in which all constraints become linear.
We propose to apply a cyclic maximization procedure on (22).

The idea is motivated by the cofactor expansion of det(H) as fol-
lows

det(H) =

N−1�
j=1

(−1)i+jhijdet(Hij), (23)

for any i = 1, . . . , N − 1, where hij is the (i, j)th entry of H, and
Hij ∈ R

(N−2)×(N−2) is a submatrix of H with the ith row and
jth column removed [10]. Note that with a fixed Hij , det(H) is a
linear function with respect to hij . Let us consider updating one row
vector ofH and one entry of g while fixing the other rows ofH and

the other entries of g. Let hT
i denote the ith row vector of H, and

gi denote the ith entry of g. The partial maximization of (22) with
respect to hi and gi is given by

max
hT

i
, gi

���
N−1�
j=1

(−1)i+jhijdet(Hij) ���
s.t. 0 ≤ h

T
i x̃[n] − gi ≤ 1 −

�
j �=i

(hT
j x̃[n] − gj), ∀ n.

(24)

Note that the objective function in (24) is still nonconvex. However,
the partial maximization problem in (24) can be solved in a globally
optimal manner by breaking it into two LPs:

p� = max
hT

i
, gi

N−1�
j=1

(−1)i+jhijdet(Hij) (25)

s.t. 0 ≤ h
T
i x̃[n] − gi ≤ 1 −

�
j �=i

(hT
j x̃[n] − gj), ∀ n.

q� = min
hT

i
, gi

N−1�
j=1

(−1)i+jhijdet(Hij) (26)

s.t. 0 ≤ h
T
i x̃[n] − gi ≤ 1 −

�
j �=i

(hT
j x̃[n] − gj), ∀ n.

The optimal solution of (24), denoted by ((hT
i )�, g�

i ), is chosen to be
the optimal solution of (25) if |p�| > |q�|, and the optimal solution
of (26) if |q�| > |p�|. This row-wise minimization is conducted
cyclically (i.e., i := (i modulo (N − 1)) + 1 at each iteration) until
some stopping rule is satisfied.

Suppose that a solution (H�, g�) is obtained by the cyclic max-
imization of (22). By (17) and (20) where βi,H and g are replaced
by �αi,H� and g�, respectively, the dimension-reduced endmember
estimates, denoted �αi for all i, are given by

�αN = (H�)−1
g

�, (27)

[ �α1, ..., �αN−1] = �αN1
T + (H�)−1. (28)

The endmember signatures can then be recovered by (13), i.e., �ai =
C �αi + d for i = 1, . . . , N . Furthermore, from (21), the abundance
vectors can be estimated as

�s[n] = [ s′[n]T 1 − 1
T
s
′[n] ]T ,

= [ (H�
x̃[n] − g

�)T 1 − 1
T (H�

x̃[n] − g
�) ]T ,∀ n. (29)

To initialize the proposed MVES algorithm, a feasible (H,g)
for solving problem (24) is needed. We can find one by solving the
following feasibility problem:

find (H,g)

s.t. Hx̃[n] − g � 0, 1
T (Hx̃[n] − g) ≤ 1, ∀ n,

(30)

which can also be implemented by LP.

5. SIMULATIONS AND CONCLUSION
We performed 100 Monte Carlo runs with the proposed MVES algo-
rithm and four existing unmixing algorithms, PPI [2], N-FINDR [3],
VCA [4] and APS [5] for performance comparison. Since PPI,
N-FINDR, and VCA can only obtain endmember estimates, the
fully constrained least squares (FCLS) [11] was used to find the
associated abundances in the simulations. Let â1, . . . , âN denote
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the estimated endmembers, and let s1, . . . , sN and ŝ1, . . . , ŝN de-
note the true and estimated abundances, respectively, where si =
[ si[1], . . . , si[L] ]T ∈ R

L and ŝi = [ ŝi[1], . . . , ŝi[L] ]T ∈ R
L.

The endmember estimation performance was measured by the fol-
lowing root-mean-square (rms) spectral angle [4]

φen = min
π∈ΠN ���� 1

N

N�
i=1 � arccos � aT

i âπi

‖ai‖‖âπi
‖ � � 2

(31)

where π = (π1, . . . , πN), and ΠN = {π ∈ R
N | πi ∈

{1, 2, . . . , N}, πi 	= πj for i 	= j} is the set of all the permuta-
tions of {1, 2, ..., N}. Similarly, the performance measure for the
estimated abundances is

φab = min
π∈ΠN ���� 1

N

N�
i=1 � arccos � sT

i ŝπi

‖si‖‖ŝπi
‖ � � 2

(32)

Clearly, the smaller the values of φen and φab, the better the perfor-
mance of the unmixing algorithm.

At each Monte Carlo run six endmembers (i.e., Alunite, Bud-
dingtonite, Calcite, Copiapite, Kaolinite, and Muscovite) with 417
bands selected from the U.S. geological survey (USGS) library [12]
were used to produce 1000 observed pixels (i.e.,N = 6,M = 417,
L = 1000). The corresponding abundances s[n] were syntheti-
cally generated following a Dirichlet distribution D(s[n], μ) with
μ = 1

N
1 which automatically enforces (A1) and (A2) [4].

To generate the observed data set with different purity levels, let
us define a purity measure for an observed pixel x[n], indicating how
quantitatively x[n] = As[n] is dominated by a single endmember,
as follows

ρn =
‖s[n]‖
1T s[n]

= ‖s[n]‖ (33)

due to (A2). Note that 1/
√

N ≤ ρn ≤ 1 and the purity of the
observed pixel x[n] is higher for larger ρn. A set of L observed
pixels x[n] with ρ − 0.1 ≤ ρn ≤ ρ is called a data set with purity
level of ρ (where (0.1 + 1/

√
N) ≤ ρ ≤ 1), which can be generated

through the following steps.
(S1) Generate a set of K = 10L observed pixels where the abun-

dance vectors s[k] following a Dirichlet distribution, i.e.,

Ω = 	 x[k] = As[k] 

 s[k] ∼ D(s[k], μ), ∀k = 1, . . . , K � ,

and calculate the corresponding purity ρk = ‖s[k]‖ of each
x[k] for all k.

(S2) Construct the set of observed pixels with purity level equal
to ρ by randomly picking L observed pixels from Ω while
satisfying ρn ∈ [ρ − 0.1, ρ], i.e.,

{x[n] | x[n] ∈ Ω, ρn ∈ [ρ − 0.1, ρ], ∀n = 1, . . . , L}.
Note that the generated data for ρ = 1 include some x[n] with ρn �
1, i.e., highly pure pixels.

The average φen and φab of the unmixing methods for different
values of ρ = 0.7, 0.75, . . . , 1 are shown in Figure 2, where all the
algorithms perform better for higher purity level, except for APS.
The notably superior performance of the MVES algorithm over the
others can be observed for lower ρ.

In conclusion, we have presented a convex analysis based
MVES algorithm for hyperspectral unmixing without involving pure
pixels. The proposed method uses LPs to solve the MVES problem
in a cyclic fashion. Simulation results give a good validation of the
better performance of the proposed method, compared to some ex-
isting benchmark methods.
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Fig. 2. Simulation results (φen and φab) for the estimates of end-
member and abundances obtained by PPI, N-FINDR, VCA, APS,
and MVES algorithm.
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