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ABSTRACT

The Mellin transformation-based method is developed to estimate 
the parameters of non-Rayleigh radar cross section (RCS) models 
for synthetic aperture radar (SAR) images from the observed 
image. Models investigated include heavy-tailed Rayleigh and 
Weibull. For each model, we consider the three kinds of images: 
intensity, square-root of intensity, and multi-look averaged 
amplitude. Using the Mellin transformation, we derive the 
analytical expressions of the first two second-kind cumulants for 
speckle and RCS respectively, and obtain the estimators according 
to the multiplicative model of SAR images and the Mellin 
convolution. Results of parameter estimation from Monte Carlo 
simulation and real SAR images demonstrate that the proposed 
estimators, which are easy to implement in the form of closed 
expressions, are efficient in estimating the parameters of non-
Rayleigh RCS models from the observed SAR images. 

Index Terms— Synthetic aperture radar (SAR) images, non-
Rayleigh RCS model, parameter estimation, Mellin transformation, 
Monte Carlo simulation 

1. INTRODUCTION 

The popular model for radar cross section (RCS) of SAR images is, 
of course, the Rayleigh model, which is based on the assumption 
that the radar resolution cell contains a large number of scatterers 
and none of the individual scatterers is significantly larger than the 
others [1]. However, the Rayleigh model is inapplicable for images 
such as a sparse forest or an urban scene observed by a high 
resolution radar [2]. In order to accurately model the RCS in such 
cases, several non-Rayleigh models have been proposed, including 
the heavy-tailed Rayleigh and Weibull. The heavy-tailed Rayleigh 
model is a generalization of the classical Rayleigh distribution [3]. 
With its heavier tails compared to the Rayleigh model, this model 
is a better choice for characterizing the high-resolution radar 
images of urban scenes and some natural scenes such as the sea 
surface [4]. The Weibull model contains the Rayleigh as a special 
case, and it is widely used for the modeling of ocean surface, land, 
weather, and sea-ice clutter [1, 2, 5].  

One of the important problems in using these non-Rayleigh 
models in practical applications is how to estimate their parameters. 
This is not easy to achieve because the RCS is unknown to us and 
what we obtain is just the observed image. In [6], the Mellin 
transformation-based method is proposed to estimate the 
parameters of heavy-tailed Rayleigh RCS model from the observed 
intensity and square-root of intensity images. In this paper, we 
extend the Mellin transformation-based estimation to other non-

Rayleigh model, and consider the commonly used multi-look 
averaged amplitude image for each model in addition to the 
intensity image and the square-root of intensity image [2, 7]. First, 
we derive the analytical expressions of the first two second-kind 
cumulants of speckle for the intensity image, the square-root of 
intensity image, and the multi-look averaged amplitude image. 
Since the speckle in the multi-look averaged amplitude image does 
not have the closed-form expression for the probability density 
function (pdf), we use the log-normal distribution to approximate 
the statistics of speckle, based on the premise that the log-
transformed speckle is statistically very close to the Gaussian 
distribution [8]. We then derive the first two second-kind 
cumulants of the non-Rayleigh RCS models introduced above. 
Finally, based on the multiplicative model of SAR images and the 
Mellin convolution, we obtain the estimators which estimate the 
parameters of the non-Rayleigh RCS models directly from the 
observed image. The proposed estimators with the closed 
expressions are easy to implement with high estimation accuracy 
that is demonstrated by the parameter estimation experiments. 

2. BRIEF INTRODUCTION OF MELLIN 
TRANSFORMATION AND SECOND-KIND CUMULANTS 

The Mellin transformation of a function  ( 0 ) is defined 
as [6] 
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where s  is the complex variable of the transformation. Based on 
the Mellin transformation, the r th order second-kind cumulant is 
defined by 
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The commonly used multiplicative model of SAR images is 
given by [5-8] 

nxy ,                                          (3) 
where  is the observed image, y x  is the original image (RCS), 
and  is the speckle. According to the definition of the Mellin 
convolution, as stated in [6], the first two second-kind cumulants 
of  can be written as 
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Here, rxk
~

 is the r th order second-kind cumulant of RCS, and 

rnk
~

 is the r th order second-kind cumulant of speckle. The first 
two second-kind cumulants of the observed image can be 
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empirically estimated from the M  observed samples  as 
follows:
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Obviously, we can estimate the parameters of RCS models if we 
obtain the first two second-kind cumulants of speckle and RCS, 
which is shown in the following sections. 

3. THE FIRST TWO SECOND-KIND CUMULANTS OF 
SPECKLE

In this section, the probability density function (pdf) of speckle is 
introduced for three kinds of SAR images: the intensity image, the 
square-root of intensity image, and the multi-look averaged 
amplitude image. We wish to obtain the first two second-kind 
cumulants of speckle for each case. 

3.1. Intensity image     

The pdf of speckle for the intensity image is given by the 
following Gamma distribution [6] 
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where L  is the number of image looks, and  is the Gamma 
function. Using (1) and (2), we can obtain the first two second-
kind cumulants of speckle as follows: 
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Here,  is the Digamma function, and L,1  is the first-order 
Polygamma function of L  [8]. 

3.2. Square-root of intensity image 

The pdf of speckle for the square-root of intensity image is given 
by the following Nakagami distribution [6, 8] 
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Similarly, we can obtain the first two second-kind cumulants of 
speckle by 
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3.3. Multi-look averaged amplitude image

The pdf of speckle for the multi-look averaged amplitude image is 
obtained by the multi-convolution of Rayleigh distribution, but, 
unfortunately, it cannot be expressed in a closed analytical form [7, 
8]. However, it is demonstrated that the log-transformed speckle is 
statistically very close to the Gaussian distribution [8], so we can 
use the Gaussian model to approximate the log-transformed 
speckle  ( ), which has the following pdf N nN log

2

2

2
exp

2
1 N

Nf ,                      (10) 

where  and  are the expectation and variance of this 
Gaussian distribution, respectively. Then, we can readily obtain 
the following pdf of 
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In fact, the pdf above is just the log-normal distribution. We can 
easily obtain the expectation and variance of n  from (11) as 
follows:

222 2exp22exp,2exp nVarnE .
                                                                                                  (12)                         
For the multi-look averaged amplitude image, we recall that [2] 

LnVarnE 25227.0,1 .                    (13)
From (12) and (13), we can obtain 

LL 222 5227.01log,5227.01log
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From (11), using (1) and (2), we can derive the first two second-
kind cumulants of speckle as follows: 
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Substituting (14) into (15), finally, we have 
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4. THE FIRST TWO SECOND-KIND CUMULANTS OF RCS 

In this section, we model the RCS as the non-Rayleigh models 
such as the heavy-tailed Rayleigh and Weibull, and we derive the 
first two second-kind cumulants of each model for two kinds of 
SAR images: the amplitude image and the intensity image.     

4.1. Heavy-tailed Rayleigh model     

4.1.1. Amplitude image
The pdf of the heavy-tailed Rayleigh distribution for the amplitude 
image is given by 

,                    (17) 
0
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where 20  is the characteristic exponent, 0  is the scale 
parameter, and 0J  is the zeroth order Bessel function of the first 
kind [4, 6]. Using (1) and (2), we can obtain the first two second-
kind cumulants of RCS by 
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Here,  denotes the Euler’s constant. eC

4.1.2. Intensity image 
The pdf of the heavy-tailed Rayleigh distribution for the intensity 
image is given by [6] 

0
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Similarly, we can obtain the first two second-kind cumulants of 
RCS by  
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4.2. Weibull model

4.2.1. Amplitude image 
The pdf of the Weibull distribution for the amplitude image is 
given by [5] 
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where  is the scaling parameter, and c  is the shape parameter. 
Using (1) and (2), we can obtain the first two second-kind 
cumulants of RCS by 
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4.2.2. Intensity image 
From (21), we can obtain the pdf of the Weibull distribution for 
the intensity image by  
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Similarly, we can obtain the first two second-kind cumulants of 
RCS by 
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5. MELLIN TRANSFORMATION-BASED ESTIMATORS 

Since the first two second-kind cumulants are obtained for the 
speckle and the RCS, we can estimate the parameters of the RCS 
models directly from (4). We consider the heavy-tailed Rayleigh 
model as an example for the derivation. The parameter estimators 
for Weibull model can be derived similarly, so we omit the 
derivation steps and merely list the expressions for the estimators.  

5.1. Heavy-tailed Rayleigh model 

5.1.1. Intensity image 
Substituting (5), (7), and (20) into (4), after some manipulation, we 
can obtain the following estimator for the intensity image 
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5.1.2. Square-root of intensity image 
Substituting (5), (9), and (18) into (4), after some manipulation, we 
can obtain the following estimator for the square-root of intensity 
image 
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5.1.3. Multi-look averaged amplitude image 
As stated in [2], we still use the heavy-tailed Rayleigh distribution 
(17) to model the RCS for the multi-look averaged amplitude 
image. Substituting (5), (16), and (18) into (4), after some 
manipulation, we can obtain the following estimator 
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5.2. Weibull model

Using the Weibull distribution to model the RCS, the estimators 
are listed as follows for the three kinds of images.  

For the intensity image, 

LL
c

kb

Lk
c

e
y

y

log
ˆ
C2~̂

2
1expˆ

,13
~̂

3

2ˆ

1

2 .               (28) 

For the square-root of intensity image,  
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Finally, for the multi-look averaged amplitude image, 
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6. EXPERIMENTAL RESULTS 

In this section, we provide the parameter estimation results from 
Monte Carlo simulation as well as real SAR images. We observe 
that the Mellin transformation-based estimators are efficient in 
estimating the parameters of the non-Rayleigh RCS models from 
the observed SAR images.       

6.1. Monte Carlo simulation 

Each Monte Carlo simulation is repeated 100 times independently, 
and the number of the samples is 10000 for each run. Using 
various image looks and true parameters, the parameter estimation 
results for these two RCS models (heavy-tailed Rayleigh and 
Weibull) are shown in Table 1 and Table 2, respectively. 
Obviously, for the three kinds of images, the proposed estimators 
can achieve high estimation accuracy no matter what values are 
chosen for the image looks and the true RCS parameters.
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Table 1 Parameter estimation results of heavy-tailed Rayleigh 
model

Image Type

Intensity Image

Square-Root of Intensity
Image

Multi-Look Averaged
Amplitude Image

1 50

0.9985 49.5595

1.5 500
1L 4L

1 50 1.5 500
ˆ ˆ

1.5001 500.9917 1.0007 50.2355 1.4989 499.7688

0.9995 49.9226 1.4984 499.4434 1.0012 50.2471 1.5001 501.3614

1.0003 50.1484 1.4990 499.4345 1.0021 50.3782 1.4993 499.8043

ˆ ˆ ˆ ˆ ˆ ˆ

Table 2 Parameter estimation results of Weibull model 
Image Type

Intensity Image

Square-Root of Intensity
Image

Multi-Look Averaged
Amplitude Image

2 100c b

1.9927 99.9483

4 150c b
1L 4L

2 100c b 4 150c b
ĉ b̂

4.0219 150.1236 2.0005 100.0007 4.0045 149.9826

1.9992 99.9602 4.0228 149.8499 1.9966 100.0699 3.9974 150.0149

2.0019 99.9007 4.0092 149.9188 1.9984 100.0384 3.9995 149.9612

ĉ b̂ ĉ b̂ ĉ b̂

6.2. Real SAR image experiments 

The three kinds of SAR images are shown in Fig. 1, Fig. 2, and Fig. 
3, respectively. For each image, we use the heavy-tailed Rayleigh 
and Weibull distributions to model the RCS. Then, we can 
estimate the parameters of the RCS models using the method 
proposed in this paper. The parameter estimation results for these 
three kinds of SAR images are shown in Table 3, Table 4, and 
Table 5, respectively. We can see that the proposed methods are 
efficient for the parameter estimation of the real SAR images. 

           Fig. 1 The intensity image for urban region ( 10L )

Fig. 2 The square-root of intensity image for rural region ( 10L )

Fig. 3 The multi-look averaged amplitude image for mountain 
region ( 4L )

Table 3 Parameter estimation results for the intensity image (Fig. 1) 
Model Estimated Parameters

Heavy-Tailed Rayleigh
Weibull

ˆ ˆ1.9412, 25.2032
ˆˆ 1.9412, 10.7289c b

Table 4 Parameter estimation results for the square-root of 
intensity image (Fig. 2) 

Model Estimated Parameters
Heavy-Tailed Rayleigh

Weibull
ˆ ˆ1.8555, 1114.5

ˆˆ 1.8555, 91.7777c b

Table 5 Parameter estimation results for the multi-look averaged 
amplitude Image (Fig. 3) 

Model Estimated Parameters
Heavy-Tailed Rayleigh

Weibull
ˆ ˆ1.1943, 68.4640

ˆˆ 1.1943, 101.6344c b

7. CONCLUSIONS 

In this paper, we estimate the parameters of commonly used non-
Rayleigh RCS models from the observed SAR image based on the 
Mellin transformation. Our contribution can be summarized as 
follows: (1) we extend the Mellin transformation-based estimation 
to other non-Rayleigh model, and (2) we consider the commonly 
used multi-look averaged amplitude image for each model besides 
the intensity image and the square-root of intensity image. We 
focus our attention on the first two second-kind cumulants of 
speckle and the RCS, respectively. Particularly for the multi-look 
averaged amplitude image, we use the Gaussian distribution to 
approximate the statistics of the log-transformed speckle, then, we 
obtain the analytical closed-form expressions of the first two 
second-kind cumulants of speckle. Using the multiplicative model 
of SAR images and the Mellin convolution, we derive the 
parameter estimators with the closed forms for the non-Rayleigh 
RCS models. With the closed-form expressions and high 
estimation accuracy amply demonstrated by the parameter 
estimation experiments, the proposed estimators are efficient for 
estimating the parameter of the non-Rayleigh RCS models from 
SAR images. 
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