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ABSTRACT

 
Surface texture classification is an important aspect of Computer 
Vision and a well studied problem. In this paper, we greatly 
increase speed for texture classification while maintaining 
accuracy. We take inspiration form past work and propose a new 
method for texture classification which is extremely fast due to the 
low dimensionality of our feature space. We extract distinctive 
features at a very early stage, thus removing the dependency on 
expensive and sensitive operations such as k-Means clustering 
which is used by much work in this field of research. We present 
experimental results on the Colombia-Utrecht Reflectance and 
Texture Database (CURET), to date the most challenging dataset 
for texture classification, and show that our method achieves 
comparable classification accuracy in comparison with the state-
of-the-art, but at a 10-fold increased speed. 
 

Index Terms— Image Classification, Image Texture 
Analysis
 

1. INTRODUCTION 
 
Surface texture classification is the process of determining the 
category of an unknown material from a set of known categories. 
For example, many image retrieval algorithms try to compute local 
variations of intensity to select the correct image containing a 
particular object(s) from a given database of images. An important 
confounding problem is that in real life textured surfaces occur 
under variations of illumination and orientation, among other 
visual differences. These changes may make us perceive the same 
texture as different under different conditions. Until recently, most 
algorithms that tried to classify texture suffered from the effect of 
these variations of illumination and viewpoints. 

In this paper we propose a novel approach for classifying 
texture under varying conditions of illumination and viewpoint, 
whereby we represent texture in a Weibull space. We then learn 
the information stored in each training image of a particular texture 
class by measuring its information entropy in this space. In the 
classification stage we choose for a test image its nearest 
neighbour in the Weibull space, i.e. – the training image which has 
the closest amount of information as in the test image. The result is 
a much faster algorithm which we compare with the state-of-the-
art in terms of speed and accuracy. We perform all our 
experiments on the CURET database ([1, 2]), to date the most 
challenging database for texture images capturing variations in 
illumination and viewpoint. 

The rest of the paper is organized as follows: in Section 2 we 
briefly review the literature in this line of research, in Section 3 we 
describe our approach, Section 4 is dedicated to our experiments, 
we analyze our results in Section 5, and finally conclude in Section 
6 with some future directions for our work. 
 

2. BACKGROUND 
 
Over the past 30 years texture analysis has been widely studied 
and numerous methods have been proposed for describing image 
texture. Texture analysis methods were divided by [3] into four 
categories: statistical, geometrical, model-based and signal 
processing. For detailed study we point the reader to the following 
surveys on texture analysis methods: [4], [5], and [3]. 

Most of the earlier work assumed constant imaging conditions 
and therefore are limited in terms of performance when such 
variations are added to the image. An excellent example of a 
database of textures that incorporate variation in lighting and 
viewpoint is CURET [2]. This is to date the most challenging and 
largest database for texture [1]. 

Originally proposed by [6], Leung and Malik [7] provided the 
first working version of textons, “elementary particles” that 
constitute texture. The work of [7] (denoted LM) produced notable 
classification results on the CURET dataset. In the texton 
approach, filter responses are first generated by convolving an 
image with a bank of 48 filters (48 are used in LM) that include 
first and second derivatives of Gaussians at multiple scales and 
orientations, Laplacian of Gaussians, and Gaussians. A 2D texton 
is defined as the cluster centers in the filter response space, where 
each (sampled) pixel has a 48-vector of responses. However, 
images had to be carefully registered during the learning stage and 
then mapped to a 48 dimensional filter response space. 

Rotationally invariant set of Gabor-like filters were proposed 
by [8] (Schmid denoted “S”) that also achieved good classification 
performance on the CURET dataset. 

To date, the state of the art in terms of classification accuracy 
is provided by the work of [9]. They introduce the idea of 
Maximum Response Filters (MR8 and MR4) which are a collapsed 
sub-set of the “Root Filter Set” (RFS). The RFS filters are similar 
to the LM filters, but there are 38 of these instead of 48 (as in LM). 
Further, the filter responses from the 38 filters are collapsed by 
keeping the maximum response across orientations, thus reducing 
the number of filter responses to 8 and 4 for MR8 and MR4 
respectively, for each image. This is done to achieve higher 
classification rates on directionally dependent textures that are 
hard to classify using just the S set. Moreover, they reduce the 
dimensionality of their feature space, which makes their clustering 
process simpler. Finally, they propose a greedy algorithm which 
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tries to reduce the number of models required to represent a class 
of texture without affecting classification accuracy. 

A different line of research, such as in [10], is concerned with 
other properties of textured surfaces. In [11], they provide the 
notion of a sequential fragmentation process. Here a textured 
surface is perceived to be the result of magnifying into a large 
structure resulting in the structure resolving into smaller structures. 
The fragmentation process is stochastic in nature for almost all 
textures, especially those present in the CURET database. They 
propose the Weibull distribution as suitable (by performing the 
Anderson-Darling test and measuring goodness-of-fit) to measure 
the distribution of such textures as a function of orientation. As a 
result, the two Weibull parameters (shape of the distribution and 
scale of the distribution) that characterize a probability distribution 
function are capable of characterizing the spatial layout of 
stochastically ergodic textures. In [10] they move on to extract 
properties of texture (such as regularity, coarseness) based on the 
Weibull parameters. We take insight from their work and, using 
Weibull parameters, define our own feature space which has a 
much reduced dimensionality than other texture classification 
methods discussed in this section. 

 
3. PROPOSED APPROACH 

 
3.1. Preprocessing Steps 
 
The following pre-processing steps are applied before going ahead 
with any learning or classification. 

We use the modified version of the CURET dataset which can 
be found at [12]. All processing is done on the cropped regions in 
this dataset and they are converted to grey scale and intensity-
normalized to have zero mean and unit standard deviation. This 
normalization gives invariance to global affine transformations in 
the illumination intensity. 

Second, filter banks (see Section 3.2) are L1 normalized, so 
that the responses of each filter lie roughly in the same range. In 
more detail, each filter Fi in the filter bank is divided by ||Fi||1 so 
that the filter has unit L1 norm. This is to make the scaling for each 
of the filter response axes the same [13]. 

 

 
Fig. 1. Sample Filter Responses. An Example Image (1st column), 
Medium Scale Gaussian First Derivative at 0  (2nd column, 1st 
row), Medium Scale Gaussian Second Drivitive at 90  (2nd 
column, 2nd row), Rotationally Symmetric Gaussian at Scale = 10 
(2nd column, 3rd row), Corresponding Filter Responses (3rd column)

3.2. Root Filter Set (RFS) 

RFS consists of 38 filters, partitioned as follows: first and second 
derivatives of Gaussians at 6 orientations and 3 scales making a 
total of 36, and 1 Gaussian and 1 Laplacian of Gaussian filter. The 
Gaussian and Laplacian of Gaussian both have scale  = 10 pixels 
(these filters have rotational symmetry). The bar (first derivative) 
and edge (second derivative) filters both include 3 scales: 
( x, y)={(1,3), (2,6), (4,12)}. These filters are oriented at 6 
orientations: (0 , 30 , 60 , 90 , 120 , 150 ). Sample filters and 
their corresponding filter responses on a textured surface are 
displayed in Figure 1. 
 
3.3. Histogramming 

Our first contribution is at this stage where after applying RFS to 
each training image, we obtain a set of 38 filter responses for each 
image. We histogram each of these filter responses to speed up the 
process of Weibull parameter estimation for a particular filter 
response (see Section 3.4). Properties of the histogram (number of 
bins/bin size) will be analyzed in Section 5 and some interesting 
insights will be revealed. 
 
3.4. Mapping to the Weibull Space 

At this point we observe the nature of textured surfaces proposed 
in [11], and therefore move to fit a 2-parameter Weibull 
distribution to each of the histograms we generated in the previous 
step. Therefore, we map a filter response to its corresponding 
location in the Weibull space. This is our second and most 
significant contribution. The Weibull distribution has the following 
probability density function (pdf): 
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for x>0, and f(x; k, ) = 0 for x  0, where k > 0 is the shape 
parameter and  > 0 is the scale parameter of the distribution. 

To estimate the parameters of such 2-parameter Weibull 
distribution we take the partial derivatives of the pdf with respect 
to the parameters. The two equations for shape and scale, 
respectively, are as follows: 
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Equation 2 (estimating shape of the distribution) is solved 

using the Newton-Raphson method. 
 

3.5. The Final Model 

We store the shape and scale parameters for each filter response 
for each image. This is our model for an image;  i.e., every image 
is represented by a 76-vector (38 values for scale and 38 values for 
shape). And that is the complete, very simple model used here. 
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4. CLASSIFICATION METHOD 
 
4.1. Distance in the Weibull Space 
 
We note that the information entropy for a Weibull distribution is 
defined as follows: 

1log11
kk

H
                                       (4) 

where k > 0 is the shape parameter and  > 0 is the scale parameter 
of the distribution, and  is the Euler–Mascheroni constant with 
numerical value 0.577 (to 3 decimal places) [14]. 

The information entropy measurement captures the 
information stored in a Weibull distribution represented by a pair 
of {shape, scale} parameter. Therefore, we use equation 4 as basis 
of a distance measure between two images in our Weibull space. 
I.e., for every image we have a 38-vector of entropies (one for 
each shape, scale pair).  Now for every test image we measure the 
L2 distance between its entropy vector and that of a training image. 
We classify the test image according to the class of its nearest 
neighbor amongst the training images. Further details of the 
experimental setup follow in Section 4.2. This entropy based 
distance measure is indeed new to this paper and has produced 
superior classification results.  
 
4.2. Experimental Setup 

We follow the experimental setup of [9] in order to compare our 
results with theirs and other previous results of texture 
classification (S,LM). 

We perform three experiments to assess texture classification 
rates over 92 images for each of 20, 40 and 61 texture classes 
respectively. The first experiment, where we classify images from 
20 textures, corresponds to the setup employed by [15] which is 
also used by [9]. The second experiment, where 40 textures are 
classified, is modeled on the setup of [7] also used by [9]. In the 
third experiment, we classify all 61 textures present in the 
Columbia-Utrecht database corresponds to the setup employed by 
[9]. The selected images result from the modified CURET dataset 
which can be found at [12]. 

Each experiment consists of two stages: generating a model 
for the class (using 46 images per texture class) and classification 
of novel images (the remaining 46 images per texture class). 

To compare the run-time of our algorithm with that of [9] we 
conducted our experiments on a Windows based system with Intel 
2.2GHz processor, 2GB of RAM running Matlab 7.1. We selected 
a set of 480 training and test samples and ran the classification 
procedure multiple times under consistent experimental 
environment to generate the average run times per texture for the 
algorithms (see Table 2). 
 

5. RESULTS AND DISCUSSION 
 
The results (percentage accuracy of classifying test images) of all 
three experiments are presented in Table 1. The first point we note 
from Table 1 is that in case of 20 texture classes our method, 
achieves classification accuracy rates very close to that of S, and 
LM, notwithstanding its simplicity and much faster speed (see 
Table 2). It is better than the MR4 approach in all cases and only 
slightly (~2%) worse than MR8 for the 20 class case. 
 

Table 1. Comparison of Classification Accuracy for 
Varying Number of Texture Classes

 # of Texture Classes 
Approach 20 40 61 

S 96.30 95.27 94.62 
LM 96.08 93.75 93.44 

MR4 (200 Textons) 94.13 92.07 90.73 
MR8 (200 Textons) 97.83 96.41 96.40 
MR8 (610 Textons) - - 96.93 
Our Weibull based 95.98 92.28 91.52 

 
However, for the case with all 61 classes in the database our 

method is some 5% worse than MR8. We will come back to this 
point but first we present the execution times per texture in Table 
2. 

 
Table 2. Execution Times Per Texture

Approach Model 
Generation Classification

Our Weibull based ~2.7s 8x10-4s 
MR8 (610 Textons) ~26s 4x10-3s 
MR8 (200 Textons) ~22s 1.4x10-3s 

 
The method proposed in this paper is almost 10 times as fast as 

that of [9] (the MR8 approach). Although in the worse case (when 
classifying all 61 texture classes) our method does lose 5% 
accuracy, it can be argued that the method proposed here makes up 
for that in run-time. Of course, when using less number of texture 
classes (for example, 20) our accuracy is very close to that of MR8 
but our method is 10 folds faster. We analyze the dimensionality 
and complexity of MR8 further and compare it to ours. 

Up until the point of generating filter responses to the 38 filters 
from RFS both our approach and MR8 have identical complexity.  
Let  be the number of pixels in each filter response. 

To generate the texton dictionary MR8 clusters the filter 
responses using a standard k-Means technique. There are a 
number of reliability issues related to this step. A standard k-
Means technique is not guaranteed to converge in polynomial time. 
It has been shown by [16] that with high probability the k-Means 
algorithm may converge in super-polynomial time. They also go 
on to prove that the worse case complexity of k-Means on n data 
points is 2 ( n). We have that, n for the MR8 approach is 13  (13 
sample images are chosen at random from each class). This would 
generate 10 textons for a particular class and the process has to be 
repeated for all 20 texture classes and for different samples, further 
adding to the complexity. Given that the clustering method is not 
guaranteed to converge (in our experiments the k-Means failed to 
converge even within 100 iterations), especially under such high 
dimensions, the ordering and initialization of the data becomes 
very critical. For example a simple re-ordering of initial 
neighbours, be they pixels from the filter response or even the 
column ordering of the MR8 features, will adversely effect the 
generation process of textons/cluster centres. 

In contradistinction to these problems, our method extracts 
meaningful information (Weibull shape and scale parameters) from 
each filter response without being dependent on so many 
parameters. The transformation of a filter response to the Weibull 
space involves histogramming the data first. This gives rise to the 
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question that how many bins should there be in the histogram and 
what should be the size of each of them? Interestingly, in a fairly 
exhaustive set of experiments we found that it does not matter 
what the number of bins are as long as they are above a certain 
threshold (in our case this happens to be 1000). This is primarily 
due to the information present in the filter responses from specific 
filters and the Weibull fit process (essentially a least squares type 
estimate). A sample estimated probability density function is 
presented in Figure 2. Increasing the number of bins does not 
improve or reduce classification accuracy. Even decreasing the 
number of bins to as low as 201 only slightly reduces the 
classification accuracy (for 61 classes the accuracy drops by 
0.04% only). So our algorithm is independent of the number of 
bins in the histogram. 

 
Fig. 2. (Left) A filter response, (Right) Probability density 
function (the black line) generated from the estimated weibull 
parameters for the histogram of the filter response on the left

The second important criterion of our proposed approach is the 
convergence of the Newton-Raphson method while estimating the 
shape parameter of the Weibull distribution. Although we allow a 
maximum number of iteration of 30, in practice for 99.73% cases 
of the 213,256 filter responses (61 classes, 92 images from each 
class, 38 filter responses for each image) present in the dataset, the 
Newton-Raphson method converges in 5 iterations or less. 
 

6. CONCLUSION AND FUTURE WORK 
 
We have set out a new texture categorization method that 
recognizes texture surface distributions are often well represented 
by the Weibull distribution. Our method can dispense with a good 
deal of the complexity of the texton approach while maintaining 
comparable classification accuracy, notwithstanding a substantial 
speedup in the algorithm. The new entropy-based similarity 
measure has not been suggested before for judging nearness of 
distributions. 

In future, we intend to improve on our results by 
incorporating a technique, such as that of [17], to pre-process the 
images and create their illumination invariant versions. This can be 
done as we have sufficient number of images representing all 
change in illumination. Moreover, we believe the images could be 
phase normalized using the Weibull Entropy measure. This would 
greatly reduce the effect of view-point variation and thus improve 
classification accuracy. 
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