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ABSTRACT 

In this paper, we investigate both linear and circular 
stochastic models in the context of texture discrimination. 
These models aim at representing the magnitudes and 
orientations obtained by a complex wavelet decomposition, 
such as the steerable pyramid.The novelty consists in 
considering specific parametric models for circular data such 
as von Mises and ψ- distributions to describe the 
distributions of orientations. Particular attention is paid to 
the choice of a metric and to its adequation to the models. 
Indexing experiments are conducted to quantitatively 
evaluate the performances of the proposed models and of the 
chosen matrices, i.e. the 1L and Kullback-Leibler distances.  

Index Terms— texture, oriented pyramid 
decomposition, orientation, Gamma distribution, Ψ-
distribution, Kullback-Leibler distance

1. INTRODUCTION 

In conventional image processing tasks implying texture 
modeling such as filtering, classification, segmentation or 
synthesis, the main challenge is to find relevant features that 
capture the spatial information provided by the image. At the 
end of the 1990’s, several works (e.g.[1]) related to texture 
modeling showed how relevant it is to model the filter bank 
responses obtained by multiscale oriented decomposition. 
The choice of a relevant model depends on the nature of the 
multiscale decomposition. In the case of complex wavelet 
decompositions, most approaches focus on the magnitudes 
or on the real and imaginary parts of the complex subbands 
using standard linear statistical models [2, 3, 4].

Yet, as a result of such complex filter bank 
decompositions, multiscale information about orientations in 
texture is directly available. Modeling such orientations 
imply the use of circular statistics i.e. statistics of directional 
data [5]. Directional data are a kind of cyclic data in which 
measures are embedded on the circle such as orientations in 
[0, 2 [ or directions in [0, ]. Recent works [6, 7, 8] propose 
to use the first and second circular moments or the circular 
histogram of angles to discriminate textures. None of these 

works implements a complete stochastic modeling of the 
structural information on texture provided by orientation 
data.  

In this paper, we aim at exploring the potential of both 
circular and linear stochastic models for texture 
discrimination. Circular and linear parametric models are 
chosen to describe orientation and magnitude information 
respectively. We consider that magnitudes and orientations 
are independent. The same principle was used in [8] where 
the empirical magnitude is modeled using a Gamma 
distribution and the orientation is described simply using the 
empirical histogram. In contrast, we propose here to make 
use of circular models to handle orientation data. We 
consider two types of parametric models respectively the 
von Mises and Ψ-distributions and investigate the 
appropriateness of some metrics or divergences. The 
efficiency of the couples “model-metric” is investigated 
within the image-retrieval framework described in [7]. 
Results are compared with the ones obtained in [8].

The article is organized as follows. In Section 2, we 
briefly review some related works proposed in literature 
dealing with orientation estimation. Then, in Section 3 we 
focus on magnitude and orientation modeling. In Section 4, 
we introduce the similarity measures. In section 5 we present 
the experimental setup and results. Finally, section 6 is 
dedicated to final remarks, conclusion, and prospects. 

2. LOCAL MAGNITUDE AND ORIENTATION 
ESTIMATIONS 

Directionality and coarseness are conventional features used 
to characterize texture regularity. They can be extracted 
from the image partitioned into frequency channels 
according to any complex wavelet decomposition. The 
image is decomposed using a set of or scN N×  oriented 
filters, where orN  and scN  denote the numbers of 
orientations and scales. This decomposition results in 

or scN N×  complex oriented subbands ),(, yxC lk  and two 
residual high-pass and low-pass bands. In the remaining of 
the paper, we consider only the or scN N× oriented 
subbands. Low-pass or high-pass bands can exhibit multiple 
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orientations. Of course, several types of filters banks exist 
with various intrinsic properties; see [7] for instance.  
Local orientations and associated magnitudes can be directly 
derived from complex coefficients. The moduli of the 
complex coefficients are related to the magnitude of texture 
patterns defined by ( ) ( ),, , ,k lk lA x y C x y= . 
Local orientations can be deduced from the local increments 
of the coefficient phase ( ), ,k l x yϕ  defined by 
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where [ ], ,k lϕ π π∈ − . 
Orientation at pixel (x ,y) in band (k ,l) is given by 
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In the following, parametric models for the probability 
density functions of ( ) ( ), ,, and ,k l k lA x y x yθ are proposed 
and used for texture characterization. We aim at evaluating 
the description capability of joint linear-modulus and 
circular-orientation stochastic models. Moreover, we argue 
that the parametric form is a well-founded alternative to the 
empirical discrete orientation histogram. 

3. MODELS FOR MAGNITUDES AND 
ORIENTATION DISTRIBUTIONS 

3.1 A model for magnitude distribution 

In order to model the magnitude distribution, we use the 
Gamma distribution which has been proved in former works 
to be relevant for magnitude modeling [8]. The Gamma 
density function is defined by 

                 ( )
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where 0α > is the shape parameter, and 0β > is related to 
the scale of the distribution. 

3.2 Models for orientation modelling 

Appropriate models for orientation distributions are found in 
circular statistics. Such models are for instance the Von 
Mises [5] and the ψ-distributions [9].  

3.2.1 Von Mises distribution 

This distribution has interesting mathematical properties 
including optimal parameter estimators and mathematically 
tractable expressions for its log-likelihood and Kullback-
Leibler divergence. It is defined by 
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where -π≤μ≤π and κ≥0 are called respectively the mean 
direction and the concentration, and 0I denotes the modified 

Bessel function of the 1st kind and order 0 
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3.2.2 ψ-Distribution 

Recently, Jones and Pewsey [9] proposed a new family of 
symmetric distributions called the -distributions with a 
density function of the form 
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( )( )1/

1/cosh sinh cos
; ,

2 coshPψ
ψ

ψκψ κψ θ μ
ρ θ μ κ

π κψ
+ −

=    (3) 

where κ≥0 and -π≤μ≤π are called the location and the 
concentration. Parameter ψ ∈  describes the shape of the 

distribution. 1 /P ψ  is the associated Legendre function of the 

first kind of degree 1/ψ  and order 0. ψ-distributions are 
unimodal with mode at θ μ= . Special cases of the ψ-
distribution are the uniform, von Mises, wrapped Cauchy 
and cardioid distributions [9].  

4. SIMILARITY MEASURE 

In order to evaluate the ability of the models presented in 
section 3 to describe both individual subbands and the whole 
texture, similarity measures are required. Different metrics 
can be used based for instance on the L1 or the L2 norm 
(Euclidian distance). However, the Kullback- Leiber 
distance (KLD) or relative entropy [10] arises in many 
contexts as appropriate measures of the distance between 
two distributions.  

4.1  KLD between two Gamma distributions 

For the Gamma distribution, the Kullback-Leiber divergence 
[4] is defined by 
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where ( ).Ψ is a ψ linear distribution and ( ).Γ is a Gamma 

distribution jf  and qf  are respectively the Gamma pdf for 
images j and q. 

4.2 KLD between two von Mises distributions 

The KLD von Mises distribution is given by 
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(5) 
where 1I denotes the modified Bessel function of the first 

kind and order 1 and and j qρ ρ are respectively the von 
Mises distribution of the image j and q. 

4.3 KLD of empirical orientation histograms 

To compare our results with [8], we defined, histD , the KLD 
of the empirical distribution of the quantized angles between 
two images qI and jI

( ) ( ) ( )
( )

log, ,
j

j n
hist n q

r n

P r
D P r

P r
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4.4 Similarity measure for ΨΨΨΨ-distributions 

As no analytical form of the Kullback-leiber divergence is 
available for ψ−distributions, we use a 1L  distance between 
the distribution parameters , ,μ κ ψ  to compare two ψ-

distributions. This implies that we use a 1L  distance with the 
Gamma distribution under the linear-circular study.

5. MODEL EVALUATION 

5.1 The indexing framework 

The discrimination capabilities of both orientation and 
magnitude statistics are now evaluated within the indexing 
framework used in [7]. Indexing is performed on a texture 
database extracted from the VisTex database [12]. The latter 
is composed of 40 images of size 512×512. Each original 
image is divided into 4 subimages, resulting in a final 
database of 160 texture samples of size 256×256. Each 
original texture being considered as a single class, the 

database thus contains 40 classes and 4 samples per class.  
The hyperparameters of the distribution (linear or 

circular) are estimated by least squares. 
When submitted to the indexing framework, every sample 

is processed using the steerable pyramid described in [1], 
which decomposes the image using a set of Nor x Nsc, 
where Nor and Nsc denote the numbers of orientations and 
scales of the pyramid. We use 2 scales and 6 orientations, 
yielding 12 complex subband images on which statistical 
features are computed. 

Two experiments are carried out. In the first one, we 
analyse the performance of the model composed of a 
Gamma distribution for magnitudes and a ψ-distribution for 
orientations. In the second one, the ψ-distribution is 
replaced by the von Mises distribution. Theses results are 
compared to the retrieval effectiveness obtained in [8].  

5.2 Results 

Experiment 1: This experiment uses Gamma and ψ-
distributions. As the KLD divergence is not available for the 
ψ-distribution, the 1L  distance is chosen instead. The 
retrieval rate is presented in table 1. All parameters are 
normalized using the appropriate standard deviation. 

Table 1: Retrieval rates obtained on 256x256 images 
patches using the Gamma (1) and ψψψψ-distributions (3) 
respectively for magnitudes and orientations. The chosen 
metrics is the L1 norm, computed on distribution 
hyperparameters.

ψ-distribution 
, ,μ κ ψ

Gamma distribution 
,β α

Gamma and 
ψ−distribution 

56.2% 68,6% 70.7% 

Experiment 2: In this experiment based on the Gamma 
and von Mises distributions, the KLD can be applied. The 
expressions of the KLD are given in (8) and (9).  

We observed that the numerical values of the Kullback-
Leibler divergence on Gamma distributions are higher than 
those obtained on von Mises distribution (results not 
reported here). In order to combine both distributions in a 
common metric, a specific kernel [11] has thus to be used 
which performs a non-linear transformation of the metric 
value. Herein, we consider the exponential kernel 

( )1 expKD aD= − −
where D is the KLD defined in section 3 and a is a constant, 
i.e. the adaptation, which was given the value 4 in the 
following. 

In the case of empirical orientation histograms, the KLD 
is of the same order of magnitude as the KLD of Gamma 
distributions. In this case, we thus give the constant a the 
value 1. 

Tables 2 and 3 present the indexing results obtained 
using this KLD.  
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Table 2: Retrieval rates obtained on 256x256 images 
patches using the Gamma distribution for magnitudes 
and the von Mises distribution for orientations. 
Distances between patches are computed using the 
parametric expressions of the KLD given by (4) and (5). 

KvMD KGamD KvM KGamD D+
75.1% 83.2% 86.5% 

Table 3: Retrieval rates obtained on 256x256 images 
patches using the Gamma distribution for magnitudes 
and the von Mises distribution for orientations. 
Distances between patches are computed using the 
parametric expression of the KLD for the Gamma 
distribution (4) and the non parametric one for 
orientation distributions (6). 

KhistD KGamD Khist KGamD D+
74.5% 83.2% 83.4%

5.3 Discussion 

Table 1 summarizes the overall retrieval rates obtained 
when using either the hyperparameters of the Gamma 
distribution, those of the ψ-distribution, or all hyper-
parameters together. We observe that performances increase 
when both magnitude information and orientation 
information are combined. 

In table 2, we observe that the use of the KLD allows an 
increase of the discrimination rate from 68,5%, with distance 
L1, to 83,2% with the KLD. Moreover, as in the case of the 
first experiment, when we combine the KLD of the von 
Mises distribution with the KLD of the Gamma distribution, 
the retrieval rate (86.5%) is increased. 

Table 3 shows the retrieval rate obtained for KLD with 
the same kernel as the one used in the second experiment. 
We see that the retrieval rate also increases when combining 
the Gamma distribution and the angular empirical 
distribution.  

Finally, when comparing table 2 to table 3, it appears that 
the parametric expression of the KLD on von Mises 
distributions allows better results (86.5%) than the non 
parametric KLD (83.4%).  

6. CONCLUSION 

An evaluation was carried out according to an indexing 
experiment to evaluate the capabilities offered by circular 
statistics for modeling orientation data obtained by 
multiscale oriented decompositions of textures. 

It is shown that, combined with magnitude statistics, 
multiscale orientation information allows a significant 
increase of the discrimination capability. Besides, the 

superiority of parametric circular models upon empirical 
distributions is also shown. 

Finally, these results show that the performances of the 
classification system rely both on the selected models and on 
the metrics used for discriminate textures. This lead us to 
choose a circular model, the von Mises pdf, for which the 
KDL is mathematically tractable and can be easily 
computed. 

Future work will concern joint parametric models of 
orientation and magnitude data. New models which take in 
consideration the dependence between linear and circular 
data will thus have to be addressed. Spatial dependences of 
either magnitudes, orientations or both will also have to be 
considered in order to take the spatial structure of textures 
into account. 
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