
SPATIAL STRUCTURE CHARACTERIZATION OF TEXTURES IN IHLS COLOUR SPACE

I. QAZI, O. ALATA and C. F. MALOIGNE

Laboratory XLIM Department SIC,
University of Poitiers,

bat. SP2MI, av. Marie et Pierre Curie, 86960,
Chasseneuil-Futuroscope Cedex, France,

email: {qazi,alata}@sic.sp2mi.univ-poitiers.fr,
web: www.sic.sp2mi.univ-poitiers.fr

J. C. BURIE

Laboratory L3I,
University of La Rochelle,

avenue Michel Crepeau, 17042,
La Rochelle Cedex 1, France,

email: jean-christophe.burie@univ-lr.fr,
web: http://l3i.univ-larochelle.fr/

ABSTRACT
We present model based approaches for colour texture character-
ization in IHLS colour space. Pure chrominance structure infor-
mation is used in parallel with luminance structure information for
colour texture classification. Hue and saturation channels are com-
bined through a complex exponential to give a single channel which
holds all the chrominance information of the image. Two dimen-
sional complex multichannel versions of Non-Symmetric Half Plane
Autoregressive model and Gauss Markov Random Field model are
used to perform parametric power spectrum estimation of both lu-
minance and the “combined chrominance” channels of the image.
Colour texture classification is done using k-nearest neighbor algo-
rithm on spectral distance measures both for luminance and chromi-
nance channels individually as well as combined through a com-
bination coefficient. Experimental results show that colour texture
characterization obtained by combined luminance and chrominance
structure informations is better than the one obtained by using only
luminance structure information.

Index Terms— Parametric spectrum estimation, 2D multichan-
nel random field modeling, Colour texture classification.

1. INTRODUCTION

Characterization of spatial variations in colour images has acquired
attention of the researchers in the last two decades. Power spectrum
information of the colour images can be used to obtain very useful
knowledge regarding the spatial feature variations [1]. Frequency
domain measures are considered to be less sensitive to noise pro-
cesses as typical noise processes tend to affect local spatial variation
of luminance levels but they present uniform distribution in spatial
frequency. Due to these reasons power spectrum estimation of multi-
dimensional random fields has been a point of interest for researchers
for a long time.

In [2] model based Spectrum estimation of a single channel by
Two Dimensional (2D) Gauss Markov Random Field (GMRF )
has been discussed. The method is not able to deal with 2D mul-
tichannel data neither real nor complex.

In [3], the authors presented a 2D multichannel autoregressive
model based method for the spectrum estimation of real valued data.
The authors discussed the autospectra and the cross spectra of the
2D multichannel data but being only limited to the real valued mul-
tichannel case, the method is not very well suited for the polar rep-
resentations of colour images. In [4], the authors used Gaussian

Mixture Models for autoregressive model features to classify colour
textures. Authors have not considered chrominance structure infor-
mation at all and they have also considered a non-zero mean case in
which AR coefficients do not contain the pure structure information
but they are also somewhat influenced by the pure colour informa-
tion. In [5], authors have presented a Markov Random Field model
which combines the colour and texture information to perform the
colour texture classification. Gabor filters are used as the texture fea-
tures while CIE-L*u*v* color values as colour features. Still in this
approach they have not considered the chrominance structure infor-
mation seperately and effects of its fusion with luminance structure
information are also not studied.

In this paper we present a model based approach for colour
texture classification through 2D multichannel spectral estimation
of complex random fields. For this purpose real valued (RGB)
colour images are converted to a 3D polar representation of Im-
proved Hue, Luminance and Saturation (IHLS) colour space [6].
Then, an approach for the concurrent spectrum estimation of lu-
minance and chrominance (consisting of both Hue and Saturation)
is stated. For this, multichannel complex versions of random field
linear prediction models including 2D Non-Symmetric Half Plane
Autoregressive (2D NSHP AR) and Gauss Markov Random Field
(GMRF) models are used and then finally the results for colour
texture classification using spectral distance measures on estimated
power spectra for both these models are compared and discussed.

In section 2 colour space conversion used for the work is dis-
cussed, while section 3 describes the multidimensional linear pre-
diction models used for power spectrum estimation. Simulations
and results are presented in section 4. Finally section 5 concludes
the paper.

2. IHLS COLOUR SPACE

The RGB colour space is usually used for image processing and/or
analyzing. However the representation of RGB components in a 3D
polar coordinate system often reveals characteristics which are not
visible in the rectangular representation. To achieve this, we used the
IHLS colour space: an improved version of the HLS colour space
defined in [6]. Other colour spaces like CIE-L*a*b* may also be
used.

Let’s consider an RGB image whose colours are defined as vec-
tors [R, G, B]T . Each term R, G and B of the vectors belong to the
interval [0, 1]. Thereby all colours are included in a cube [0, 1] ×
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[0, 1] × [0, 1]. For this RGB image Luminance, Saturation and Hue
values in IHLS colour space are given as:

Y = 0.2126R + 0.7152G + 0.0722B (1)

S = max (R, G, B) − min (R, G, B) (2)

H =

[
360◦ − H

′
if B > G

H
′

otherwise

]
(3)

where H
′

is given as:

H
′

= arccos

[
R − 1

2
G − 1

2
B

(R2 + G2 + B2 − RG − RB − BG)
1
2

]

(4)
It gives very small values of Hue independent of Luminance values
for achromatic images that makes feature extraction simpler. The
inverse transform from IHLS to RGB is given as:⎡

⎣ R
G
B

⎤
⎦ =

⎡
⎣ 1.0000 0.7875 0.3714

1.0000 -0.2125 -0.2059
1.0000 -0.2125 0.9488

⎤
⎦

⎡
⎣ Y

C1

C2

⎤
⎦ (5)

where C1 and C2 are given as:

C1 = K × cos (H) (6)

C2 = −K × sin (H) (7)

and

K =

√
3S

2sin (120◦ − H∗)
(8)

where H∗ = H − l × 60◦ where l ∈ {0, 1, 2, 3, 4, 5} so that
0◦ ≤ H∗ ≤ 60◦. We use the colour information obtained through
this transformation to build a two channel image that contains pure
luminance values in one channel and chrominance values in the other
channel. We define this chrominance value as an exponential func-
tion depending upon two chrominance variables H and S obtained
from colour space conversion. This exponential being independent
of the luminance values shall give us the pure information about the
colour variations in the spatial domain. We define the said exponen-
tial as:

C = S × exp (j × H) (9)

We obtain a complex representation of chrominance content of the
image which is interesting to analyze the spectrum in a colourimet-
ric point of view. Now the image to be analyzed consists of two
2D channels. The first channel contains the luminance information
and second is complex valued channel containing combined chromi-
nance information (hue and saturation) and is written as:

Xn =

[
Yn

Cn

]
(10)

where n = (n1, n2) ∈ Λ ⊂ Z in which Λ is the finite 2-D image
lattice region, Yn ∈ R and Cn ∈ C.

3. LINEAR PREDICTION MODELS

A multichannel 2D random process represented by a vector sequence
X = {Xn}n∈Z

with dimension L representing the number of chan-
nels following a linear prediction model can be defined through the
prediction sequence:

X̂n = −
∑

m∈ D

AmXn−m. (11)

as
Xn = X̂n + En. (12)

where m = (m1, m2) ∈ D ⊂ Z is a point inside neighbour support
region defined by D. Am, m ∈ D, are L×L coefficient matrices and
E = {En}n∈Λ is the prediction error sequence which is supposed
to be a multichannel stationary process having a L × L covariance
matrix denoted by Σe and Power Spectral Density (PSD) matrix
denoted by Se,ν .

The power spectrum estimation is done using 2D multichannel
linear prediction model coefficient matrices Am, m ∈ D, and may
be given as:

Sν = A−1
ν Se,ν

(
AH

ν

)−1

(13)

where ν = (ν1, ν2) is the normalized frequency, ν ∈ [−0.5, 0.5]2

and Aν are L × L dimensional matrices given by:

Aν = I +
∑

m∈D

Am exp (−j2π〈ν, m〉) (14)

It is to be noted that the frequency response of the filter defined by
(12) is Hν = (Aν)−1

.
In (14), I is an identity matrix of dimensions L × L which rep-

resents the coefficients at origin (0,0) and < ., . > represents scalar
product.

In (13), Sν denotes the PSD matrix of the 2D vectorial random
process X at normalized frequency ν. AH

ν represents the hermitian
transpose of the matrix Aν .

For colour images defined by (10), L = 2. The PSD for a 2D L
channel random process defined by (11) and (12) is estimated using
(13) and (14). The PSD matrix gives us the auto spectra and the
cross spectra of the two channels. The structure of the PSD matrix
is given as:

Sν =

[
SY Y (ν) SY C (ν)
SCY (ν) SCC (ν)

]
(15)

where SY Y (ν) denotes the auto spectrum of real valued luminance
channel and SCC (ν) denotes the autospectrum of the complex val-
ued chrominance channel, while SY C (ν) = S∗

CY (ν) are the cross
spectra of the luminance and chrominance channels respectively.
In the following, the power spectrum estimation is done using 2D
NSHP AR and GMRF prediction models. Details of these two mod-
els are given in following subsections.

3.1. 2D NSHP AR Model

A multichannel 2D NSHP AR process is represented by (11) and
(12) with a neighbour support region D = DM1,M2 defined as:

DM1,M2 = {(m1, m2) /1 ≤ m2 ≤ M2 for m1 = 0,

−M2 ≤ m2 ≤ M2 for 1 ≤ m1 ≤ M2} (16)

where (M1, M2) ∈ N
2 is the model order and in the case of 2D

NSHP AR model, E = {En}n∈Z
is supposed to be a multichannel

white noise stationary process having Se,ν = Σe. We use least
squares estimation method to estimate the model parameters by
a matrix solution of a system of normal equations using Moore-
Penrose matrix inverse. Then these AR coefficients are used to
estimate the PSD matrix of the real valued luminance and the com-
plex valued chrominance channel. As E is a multichannel white
noise therefore the estimate of PSD matrix for multichannel 2D
NSHP AR model takes the form:

Ŝν = Â−1
ν Σ̂e

(
ÂH

ν

)−1

(17)
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and structure of this PSD matrix is given in (15).

3.2. Gauss Markov Random Field Model

It is possible that an observation in a 2D random field may depend
on its neighbouring observations in all directions unlike the case in
NSHP and thus making the model non-causal. A multichannel 2D
GMRF process is represented by (11) and (12). For a model order
M , D = DM is a non-causal, symmetric neighbourhood excluding
the origin (0, 0) such that if {m ∈ DM} then {−m ∈ DM}. Such
a support is defined as:

Ω1 =

{
m, argmin

m�=(0,0)

‖m‖2

}
(18a)

Ωk =

⎧⎪⎨
⎪⎩m, argmin

m/∈ ⋃
1≤p≤k−1

Ωp

‖m‖2 , m 	= (0, 0)

⎫⎪⎬
⎪⎭ , k ≥ 1 (18b)

DM =
⋃

1≤k≤M

Ωk (18c)

where ‖m‖2 =
√

m1
2 + m2

2. In case of GMRF E = {En}n∈Z

is a 2D multichannel Gaussian correlated noise sequence which has
a L × L covariance matrix denoted by Σe. GMRF model parame-
ter matrices Am are estimated again by solving a system of normal
equations using least squares method using Moore-Penrose matrix
inverse. These GMRF model parameters are then used to estimate
the PSD matrix of the process X . It can be verified that the PSD
matrix for the 2D multichannel complex valued GMRF is given as:

Sν = Σe ×
(
AH

ν

)−1

(19)

where Aν is given by (14), leading us to:

Se,ν = AνΣe (20)

This shows that E is a correlated noise sequence. As in the case
of 2D NSHP AR spectrum estimation, the PSD matrix contains both
the auto and cross spectra of the luminance and chrominance channel
as given in (15).

4. SIMULATIONS AND RESULTS

Simulations for the estimation of model parameters, for the estima-
tion of Power spectrum and consequently for colour texture classi-
fication using multichannel complex versions of 2D NSHP AR and
GMRF models were carried out. The experiments were conducted
on the MIT Vision Texture (VisTex) database. We chose randomly
10, 512×512 textured color images from the Vistex database, shown
in Fig 1.

The spectrum estimation was done on blocks of size 32. First
96 subimages of each texture were used for training, while the re-
maining 160 subimages were used for testing. In Fig 3 absolute fre-
quency content of the luminance and chrominance channel of tex-
ture 8 (Fig 2) are shown. In Fig 4 and Fig 5 estimated luminance
and chrominance spectra for the same image are shown, which are
computed in cartesian coordinates for normalized frequency range ν
where ν = (ν1, ν2) ∈ [−0.5, 0.5]2.

4.1. Spectral Distance Measure

To measure overall closeness of luminance and chrominance spectra
at all frequencies, following spectral distance measure was used:

Fig. 1: The tested texure database

Fig. 2: Test texture 8

(a) Luminance Channel (b) Chrominance Channel

Fig. 3: Absolute frequency content using 2D FFT

(a) Lum. Channel, SY Y (b) Chrom. Channel, SCC

Fig. 4: Auto Spectra using 2D NSHP AR of order (2, 2)

(a) Lum. Channel, SY Y (b) Chrom. Channel, SCC

Fig. 5: Auto Spectra using GMRF of order 4

Kβ (S1,β , S2,β) =
1

2
×

∑
ν1,ν2

∣∣∣∣∣
√

S1,β (ν1, ν2)

S2,β (ν1, ν2)
−

√
S2,β (ν1, ν2)

S1,β (ν1, ν2)

∣∣∣∣∣
2

(21)
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k = 1 k = 3 k = 5 k = 7
α 0.69 0.82 0.81 0.93
L 88.125 86.750 87.125 85.937
C 86.250 85.812 85.812 84.937

LC 94.500 94.875 94.437 93.125

Table 1: Total percentage classification of 10 colour textures using
2D multichannel complex NSHP AR model of order (2, 2).

k = 1 k = 3 k = 5 k = 7
α 0.5 0.69 0.65 0.72
L 78.000 77.938 78.875 79.188
C 71.313 72.938 72.563 72.688

LC 87.375 88.687 88.625 88.750

Table 2: Total percentage classification of 10 colour textures using
2D multichannel complex GMRF model of order 5.

where β ∈ {L, C}. The spectral distance measure given in (21)
gives the closeness of each channel individually. Therefore, in order
to combine the luminance and chrominance channel spectral infor-
mation and make it useful for improvement of colour texture classi-
fication results we define the following combined spectral distance
measure:

KLC (ν1, ν2) = α × KL (ν1, ν2) + (1 − α) × KC (ν1, ν2) (22)

This distance combines the information from both spectra using a
combination coefficient α, where 0 ≤ α ≤ 1. The optimal combi-
nation coefficient value was learned through the classification of the
same training subimages. For each k, the value of α which gives the
maximum classification percentage for these training subimages, is
used during the classification of test subimages.

Once the individual and combined spectral distances of both
luminance and chrominance channels are calculated, the k-nearest
neighbour algorithm was used to classify the colour textures. Exper-
iments were carried out for different values of k including 1, 3, 5 and
7.

Experimental results indicating the percentage colour texture
classification using 2D multichannel complex NSHP AR and GMRF
models for colour texture classification are shown in tables 1 and 2
respectively. First row in each table indicates α, the combination
coefficient being calculated for different values of k, the number of
nearest neighbours calculated for texture classification. Second and
third rows in the tables indicate the total percentage colour texture
classification results for 10 colour textures using luminance and
chrominance channel spectral information separately. In row three
total percentage colour texture classification using pure luminance
and chrominance structure information is given. Both multichannel
2D NSHP AR and GMRF models have shown reliable results for
different values of k. Two very important results can be deduced
from these tables.

Firstly it is clear that the percentage classification of colour
textures increases significantly if we use pure chrominance structure
information as an additional information with standard luminance
structure information and which was the primary purpose of this
study. Secondly we also see that if we increase the number of
nearest-neighbours that we consider, percentage classification re-
sults are not disturbed on a large scale indicating the robustness of

the approach.
Another important observation is that 2D multichannel complex

NSHP AR model gives us better results in terms of colour texture
classification as compared to the 2D multichannel complex GMRF
model. Total percentage classification of colour textures obtained by
this approach are quite good and can easily be compared to the total
percentage classification results of colour textures computed through
other existing approaches.

5. CONCLUSION

The aim of this research paper is twofold. First: In this study we
have theoretically adapted and successfully used the two dimen-
sional multichannel complex linear prediction models for modeling
of images in a perceptual colour space like IHLS which has not
been addressed so far. In this paper we have also presented a new
approach for model based combined power spectrum estimation for
both luminance and chrominance channels in IHLS colour space.

Second: A useful information of pure chrominance structure,
considering a zero mean case is computed and is fused with pure
luminance structure information to get better colour texture classifi-
cation results. The results obtained are interesting and indicate that
these type of parametric models are efficient for precise spectral es-
timates. These precise spectral estimates are very useful in applica-
tions like colour texture classification as shown in this paper, colour
texture segmentation and also in colour texture reconstruction.

The results obtained from this approach can further be improved
if pure colour information like histogram cubes in RGB or any per-
ceptual colour space like IHLS can be fused to this combined lumi-
nance and chrominance structure information like it has already been
proposed in [4], [5].

In future studies we would like to contribute to the existing work
by doing a comprehensive and detailed comparative study of these
approaches in other perceptually uniform colour spaces which in-
clude CIE-L*a*b* and CIE-L*u*v*.
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