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ABSTRACT 

 
This paper deals with texture modeling for 

classification or retrieval systems using multivariate 
statistical features. The proposed features are defined by 
the hyperparameters of a copula-based multivariate 
distribution characterizing the coefficients provided by 
image decomposition in scale and orientation. As it belongs 
to the multivariate stochastic models, the copulas are useful 
to describe pairwise non-linear association in the case of 
multivariate non-Gaussian density. In this paper, we 
propose the d-variate Gaussian copula associated to 
univariate Gamma densities for modeling the texture. 
Experiments were conducted on the VisTex database 
aiming to compare the recognition rates of the proposed 
model with the univariate generalized Gaussian model, the 
univariate Gamma model, and the generalized Gaussian 
copula-based multivariate model. 

Index Terms— Image texture analysis, Information 
retrieval, wavelet decomposition, Gamma distribution, 
Gaussian copula. 

 

1. INTRODUCTION 
For numerous application domains, texture analysis is 

used in the workflow of image filtering, classification, 
segmentation, indexing, and/or synthesis. The main issue is 
to provide a unified and well-founded model of 
homogenous textures. When dealing with statistical texture 
modeling, many authors proposed to make use real or 
complex wavelet transform in a multiorientation and 
multiscale scheme [1], [2]. This transformation which 
consists in decomposing an image into a set of oriented and 
scaled subbands captures the directionality, the 
structuredness, and coarseness of a texture. Consequently, 
approaches based on orientation and scale features imply to 
work in high-dimensional space. The topic concerning the 
selection of a stochastic model to characterize this 
augmented data-space is the main issue discussed in this 
paper. 

Several works use marginal densities to characterize 
separately each subband. Indeed, subband coefficients can 
be described by univariate Gaussian (Gaud), generalized 
Gaussian (gGaud) or Gamma (Gamd) densities [3], [4], [5]. 
Some recent works propose to use circular statistics, i.e. 
statistics of circular data [15] or joint linear-circular 

stochastic model [16] to characterize each subband 
coefficients. All these representation leads to a simple and 
attractive approach, defined by a limited set of parameters, 
but they do not provide a complete statistical description of 
the texture images. Indeed, to take into account the 
interscale and intrascale statistical dependencies between 
subband coefficients it is necessary to develop a statistical 
multivariate framework. The main problem is that the 
direct multivariate extension of the above model, e.g. 
gGaud or Gamd, are generally not analytically defined [6], 
[7], [8]. Thus, alternative models such as sub-Gaussian 
model, alpha-stable, Gaussian scale mixture or other non-
Gaussian stochastic fields for joint and marginal statistics 
has been studied in previous works [2], [9]. However, none 
of these models is very reliable due to high number of 
associated hyperparameters and due to the very high 
computational complexity for their estimate. 

In this paper, we focus on the multivariate statistical 
modeling using the copulas theory [11], [12], [13]. 
Especially, we will use a copula as a starting point for 
constructing multivariate models for texture 
characterization. Copula models have become increasingly 
popular for multivariate modeling in many fields where the 
multivariate dependence is of great interest. Copulas are 
useful especially with non-Gaussian random variables and 
play an important role in developing a unified likelihood 
framework to analyze discrete or continuous stochastic 
processes. To develop a tractable multidimensional 
statistical models based on Gamd or gGaud, we address 
copula-based multivariate model which is able to describe 
the previous dependencies and the local structure inside 
each subband. 

The paper is organized as follows. The next section 
provides the proposed statistical multivariate models for 
homogenous texture. A brief review and main properties of 
copulas is discussed followed by a description of the model 
based texture features. In section 3, experimental results are 
given to evaluate the retrieval performances of the 
proposed model. 

 
2. PARAMETRIC TEXTURE MODELING IN THE 

WAVELET TRANSFORM DOMAIN 

2.1 A brief review of copulas  
A copula is a multivariate cumulative distribution 

function (cdf) defined on the d-dimensional unit hypercube 

1045978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



[ ]d10,  such that every marginal distribution is uniform on 

the interval [ ]10, . With a help of copula one can easily 
combine univariate marginals into a multivariate 
distribution. Thanks to the Sklar theorem [11], the copula 
theory allows us to analyze the dependence structure of 
multivariate distribution separately without studying 
marginal distributions. Precisely, let [ ]d1 XX ,,=X  be a 

d -dimensional random vector with the cdf F  and margins 

d1 FF ,, . The multivariate cdf is given by 

( ) ( )dd11d1 xXxXPxxF ≤≤= ,,,, , ( ) d
d1 Rxx ∈∀ ,,  (1) 

Then there exists a copula C  such that 

( ) ( ) ( )( ).,,,, dd11d1 xFxFCxxF =   (2) 

Conversely, if C  is a copula function and d1 FF ,,  are 

univariate cumulative distribution functions, then the 
function defined in (2) is a joint cdf with margins 

d1 FF ,, . This theorem demonstrates that joint 

distribution of a random vector of variables and the 
associated marginal distribution are necessary linked by a 
copula. Moreover if the function C  is continuous and 
differentiable, then the copula density is given by  

( ) ( )
.

,,
,,

d1

d1
d

n1 uu

uuC
uuc

∂∂
∂

=    (3) 

Given that distribution F  and copula C  are absolutely 
continuous, the joint density function f  of X  is given as 

follows 

( ) ( ) ( )( ) ( )∏
=

=
d

1i
iidd11d1 xfxFxFcxxf ,,,,  (4) 

where if  is the probability density function of iX  and c  is 

the density of the copula C  defined in (3). More details 
about copula theory can be consulted in [13]. 
 
2.2 Proposed copula-based multivariate models  
 
In this subsection we attempt to introduce a copula for 
characterizing simultaneously the marginal distributions, 
and the local structure of each subband. For this purpose, 
from each i th subband noted ( ){ }nmwi ,  we consider a 

( ) ( )1q1p2 ++ 2x  window. We concatenate neighbors’ 

pixel in a column vector iW  of size ( )( )1q21p2N ++=  as 

follows  

( ) ( ) T
iii qnpmwqnpmw ],,,,[ ++−−=W  (5) 

Under the spatial homogeneity assumption of each 
subband, observations of iW  can be obtained by moving 

the window across the subband in an overlapping manner. 
To describe also the statistical interband dependencies, we 
consider the following d-dimensional random vector 

TT
B

T
2

T
1 ],,,[ WWWW =  where B  is the total number of 

bands, and each component iW  is the N -dimensional 

vector described in (5). Thus, thanks to copula approach the 
multivariate density of the −d dimensional vector W  with 

NBd =  is expressed as in (4). 

( ) ( ) ( )∏
=

=
d

1i
iid1d1 fuucf ωωω ,,,,W   (6) 

with ( ) ( )ddd111 FuFu ωω == ,, , iF  and if  are 

respectively the univariate marginal pdf and cdf of W . 
Among a wide variety of copulas, we propose a Gaussian 
copula density defined as follows: 

( ) ( )







 −−=∈∀
−

2
uc10u

1T
2

1d uIu ~~
exp,,],[  (7) 

with u~  being a vector of normal scores such that 

( )i
1

i uu −= Φ~ , and Φ  is the cdf of the normalized Gaussian 

distribution. The matrix I  implies the −d dimensional 
matrix identity and  is the correlation matrix. 
Note that the multivariate Gaussian pdf is a special case of 
(6) when all margins are univariate Gaussian. In this case 
the matrix  is the Pearson correlation matrix. If the 
margins are non-Gaussian, the ( )kj, th element of  

represents the linear correlation of two normal scores  

( ) ( )( ) ( )( )[ ]kk
1

jj
1 WFWFcorrkjr −−= ΦΦ ,,   (8) 

where Φ  is the cdf of normal distribution ( )10,Ν , jW  and 

kW  are respectively the j th and the k th univariate 

component of W . According to the structure of the vector 
W , the correlation matrix  is a block matrix structured 
as follows 












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


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   (9) 

where i  is the correlation matrix associated to i th 

subband and ij  reflects the spatial crosscorrelation matrix 

between the i th and 
j

th subbands. Moreover, since each 

band is homogenous, the diagonal matrices i  are 

structured as a ( ) ( )1p1p +×+  block Toeplitz matrices 

with Toeplitz blocks as follows 


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Each submatrix i
k  is a ( ) ( )1q1q +×+  Toeplitz one as 
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where the term ( )lkri ,  is the spatial correlation of the ith 

subband at the lags ( )lk, . Each matrix ij  in (9) has the 

same structure as i  and contains the spatial 

crosscorelation between the i th and j th subbands. 

As mentioned in the previous section, it is well-known that 
a univariate gGaud [3] or Gamd [4] would be a reasonable 
statistical representation in the multi-resolution approach. 
These univariate models are simple to fit and capable of 
characterizing the first order statistics properties of the 
band coefficients and its magnitudes respectively. Using 
copula theory, multivariate versions of these models can be 
obtained as follows  
 

Multivariate Gamma model 
To model all bands coefficients magnitudes by a 
multivariate Gamma model we use equation (4) with a 
Gaussian density copula in (7) and the univariate Gamd 
defined by  

( )
( )

( )ab

e
xxfRx

a

b
1a

Γ
θγ

−
−+ =∈∀ ,,,   (12) 

where 0a > , is a shape parameter, and 0b >  is related to 

the scale distribution, and ( ).Γ  is the Gamma function, 
defined as follows  

( ) =
∞

−−

0

1zt dttezΓ , 0z >∀    (13) 

 

Multivariate Generalized Gaussian Model 
The multivariate dGaud can be obtained using the Gaussian 
copula and the univariate gGaud as marginal. The 
univariate gGaud is given by 

( ) ( )
( )βα

βΓα
ββα xe

12
xfRx −=∈∀ ,,,   (14) 

where α  is a shape parameter, and β  is related to the 

scale of the distribution. This marginal modeling allows us 
to cover super Gaussian )( 2<β , Gaussian )( 2=β  and a 

sub gaussian )( 2>β  densities. 
 

2.3 Parameter estimation and Feature extraction 
In a parametric approach, the feature extraction step 
consists of estimating the model parameters. For 
multivariate copula-based model, the maximum likelihood 
criterion for the model in (4) requires two stages of 
estimation methods. The first stage consists in estimating 
the parameters of marginal distribution by the maximum 
likelihood estimator. In the second stage, these parameters 

are used to transform the data in the unit hypercube and 
involve a maximum likelihood estimation of copula matrix.  
If we consider the coefficients of different subbands as 
independent, the correlation matrix of the Gaussian copula 
is a block diagonal matrix as follows 












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
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Furthermore, the joint pdf associated to the ith subband is 
given by 

( ) ( ) ( )( ) ( )∏
=

=
n

1k
ik

i
in

i
1

i
ii fFFcf

ii WW ,,,,,, ωωωω (16) 

where 
iWc  is a Gaussian copula density parameterized by 

the matrix i , if  is the univariate marginal pdf of the ith 

subband characterized by the parameters i , and iF  is the 

related cdf. As a result, the signatures at each image 
constitute a vector  which contains the marginal 
parameters i  and a subset of elements from the matrix i  

of each band. 
 

3. EXPERIMENTAL RESULTS 
 

To compare the performances of the presented texture 
models, we now use the benchmark proposed by Do and 
vetterli in the framework of texture retrieval [3]. The 
retrieval scheme is applied on a set of texture images 
obtained from the MIT Vision Texture (VisTex [13]) 
database. From each of these texture images of size 
512x512 pixels, 16 subimages of 128x128 pixels are 
created. A test database of 640 texture images is thus 
obtained. The objective of our experiments is to compare 
the retrieval performances of the following models: 

 
- MGamdGC: Multivariate Gamd with Gaussian copula. 
- MgGaudGC: Multivariate gGaud with Gaussian copula. 
- UGamd: Univariate Gamd [4]. 
- UgGaud: Univariate gGaud [3]. 

For this purpose we use the steerable pyramid 
decomposition proposed in [2], [3] with 2Nsc =  levels and 

6Nor =  orientations. The univariate and multivariate 
generalized Gaussian models are used to fit only the real 
part of the steerable pyramid components. For the 
univariate approaches UGamd and UGaud, the marginal 
parameters of each band are estimated using the ML 
technique described respectively in [3] and [4]. For each 
model the estimated parameters are concatenated to form a 
feature vector  

[ ]BB11UGamd baba ,,,,=    (17) 

[ ]BB11UgGaud βαβα ;,;;=    (18) 
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where NscNorB ×=  is the total number of bands. For the 
two multivariate models the feature extraction is carried out 
using the autocorrelation samples within each matrix i . 

In these experiments, the parameters p  and q  are fixed 

such as 1qp == . Thus, the matrix i  contains only the 

following 14 ×  vector ( ) ( ) ( ) ( )[ ]11r11r01r10r iiiii ,,,,,,, −=R . 

Finally, these statistics and the marginal parameters of each 
band are concatenated to obtain feature vectors MGamdGC  

and MgGaudC  as follows  

[ ]UGamdd1MgGamdGC RR ,,,=    (19) 

[ ]UGaudd1MgGaudGC RR ,,,=    (20) 

We note that the number of the extracted features for 
multivariate models is given by 

( )[ ]22q2pNorNscN ++= ..Θ    (21) 

In order to determine similarity between two images in the 
database, we use the normalized L1 distance between the 

feature vectors 1  and 2 , i.e., 

 ( ) ( ) ( )
( )

=

−
=

Θ

σ
ΘΘN

1k

21
21

k

kk
d ,      (22) 

where ( )kσ  refers to the standard deviation of the 

component k  of all the feature vectors in the database. 
In the retrieval stage a query image is any one in the 

database. The relevant images for each query are the other 
15 images obtained from the same original 512x512 image.  
The performance of each model is evaluated only in the 
average percentage of retrieving relevant images. In Table 
1, we provide a comparison of performances when the 
signatures are computed by the four previous methods. The 
maximum and minimum percentage rates were 73.4% and 
83.4%. From this table we first observe that the proposed 
multivariate models improve the performances of the 
retrieval system than univariate models. Second, from these 
results the copula based multivarite Gamma model has 
about 3% improved retrieval rate than generalized Gaussian 
multivariate model. 
 

 UgGaud UgGamd MgGauGC MgGamGC 
Average 

retrieval rate 
(%) 

73.4375 77.9785 80.3625 83.4543 

ΘN  24 24 72 72 

Table 1: Average retrieval rates (%) comparison 

CONCLUSION  
 

In this paper we have addressed the problem of texture 
image modeling in a multiorientation and multiscale 
scheme. A multivariate Gamma model using Gaussian 
copula is proposed and its performances are evaluated for 
texture indexing. The experiments results show that the 

multivariate model driven by copula presents performances 
in the retrieval system better than that of marginal 
modeling. However, the Gaussian copula used in this work 
is just a solution among others. As a perspective we intend 
in future works to use other copulas with more flexible 
dependence. 
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