
HIGHER ORDER TEAGER-KAISER OPERATORS FOR IMAGE ANALYSIS:
PART I - A MONOCOMPONENT IMAGE DEMODULATION.

El Hadji S. Diop, A. O. Boudraa

Groupe ASM, Ecole Navale
IRENav / E3I2-EA3876, ENSIETA

Ecole Navale, Lanvéoc-Poulmic
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ABSTRACT
We present in this paper a new narrowband image demod-

ulation method. Our approach is based on the 2D higher

order Teager-Kaiser operators (HOTKO). We show that the

introduction of higher orders in the Teager-Kaiser operator,

improves a lot the demodulation results, in comparison to

the Discrete Energy Separation Algorithm (DESA) and the

Analytic Image (AI) method. More precisely, for synthetic

images, we show that the approximation errors on both the

amplitude and the frequency components are much more

lower with our proposed demodulation method than the

DESA and the AI method. Moreover, it turns out that for the

presented real images, the algorithm is so efficient, especially

the amplitude counterpart, that it tracks the most important

parts in images, and segments the regions of interest. We

show how the algorithm could be used in Sonar images for

extracting mines’shadows, which is very important for both

military and civil applications.

Index Terms— Amplitude modulation, frequency modu-

lation, nonlinear filters, operators.

I. INTRODUCTION

The Teager-Kaiser Energy Operator (TKEO) was initially

introduced by Kaiser [1] for speech recognition, and later

on extended to the two-dimensional (2D) case by Yu et

al. [2]. Demodulating a signal of any dimension consists in

finding the FM (Frequency Modulation) and the AM (Am-

plitude Modulation) components. For a given image, the AM

component gives information about textures’ contrast, that is

the intensity disparity between the dark and bright textures.

The FM part tells us about the local texture orientation, the

image granularity and the edges in the image. AM-FM image

modeling have been applied in many image processing areas

[3], [4], [5], [6]. Many demodulation algorithms have been

proposed. We have the ESA (Energy Separation Algorithm)

and its discrete version, the DESA [7] and the 2D ESA

for images [8]. Both the ESA and the 2D ESA rely on

the TKEO [7], [8]. Narrowband images, modeled as 2D

spatial AM-FM signals, can be demodulated by the 2D

ESA [8]. Another image demodulation approach based on

the AI was proposed by Havlicek [9]. His approach relies

on the 2D Hilbert transform. One major weakness of all

these demodulation techniques, is that they all work only

for narrow band and locally constant amplitude signals.

HOTKO for 1D signals, which generalize the TKEO, were

first introduced by Maragos and Potamianos [10]. In [11],

Salzenstein et al. presented discrete versions of HOTKO,

and showed that the demodulation results, especially the AM

components, are qualitatively better than the ones obtained

with the TKEO and other different demodulation methods.

Motivated by the works in [11], [12], we explore in this

paper the discrete 2D HOTKO, in order to get, as for the

1D case, better image demodulation results.

II. A NARROWBAND IMAGE DEMODULATION
BASED ON HOTKO.

Let I be a discrete image. For simplicity, we also denote

by I its continuous interpolate. The image and its interpolate

will be distinguished by their arguments: if we use the nota-

tion I(k, l), then I is the discrete image; and for I(x1, x2),
I represents the interpolated image. 2D HOTKO will be

extrapolated from:

φ2 [I(x1, x2)] =

[(
∂I

∂x1

)2

− I
∂2I

∂x2
1

]
+

[(
∂I

∂x2

)2

− I
∂2I

∂x2
2

]

+ 2
[(

∂I

∂x1

∂I

∂x2

)
− I

∂2I

∂x1∂x2

]
(1)

The first two terms correspond to the 2D TKEO [2], [13].

The last one constitutes the major difference. It represents

the image’s energy correlation between the horizontal and

vertical directions. Equation (1) can be rewritten as:

φ2 [I(x1, x2)] = {Λ [I (x1, x2)]}2−I(x1, x2)·Λ2 [I (x1, x2)]
(2)
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where Λ(I) =
∂I

∂x1
+

∂I

∂x2
. The generalization at any order

k is given in [12] by:

φk [I(x1, x2)] =Λ [I (x1, x2)] · Λk−1 [I (x1, x2)]

− I(x1, x2) · Λk [I (x1, x2)] (3)

We prove by recurrence that for all k > 3, we have:

φk [I(x1, x2)] =∂1 {φk−1 [I(x1, x2)]}+ ∂2 {φk−1 [I(x1, x2)]}
− φk−2 [∂1I(x1, x2) + ∂2I(x1, x2)] , (4)

where, for any function f of class Cm(R2),

∂m
1p2q (f) =

∂mf

∂xp
1∂xq

2

(x1, x2) with p+q = m. Let’s consider

an AM-FM image:

I(x1, x2) = a(x1, x2) cos (Ω1·x1 + Ω2·x2) . (5)

For a pure 2D sinusoid (i.e a(x1, x2) = cste), applying I to

φ2 yields:

φ2 [I(x1, x2)] = [a(x1, x2)]
2 (Ω1 + Ω2)2 (6)

Thanks to [2], we have:

φ3 [I(x1, x2)] = 0 (7)

φ4 [I(x1, x2)] = − [a(x1, x2)]
2 (Ω1 + Ω2)4 (8)

We also get:

φ2 [∂1I(x1, x2)− ∂2I(x1, x2)] =

[a(x1, x2)]
2 (Ω1 − Ω2)2(Ω1 + Ω2)2 (9)

φ2 [∂1I(x1, x2) + ∂2I(x1, x2)] =

[a(x1, x2)]
2 (Ω1 + Ω2)2(Ω1 + Ω2)2. (10)

We use I1(k, l) = 1
2 [I(k + 1, l)− I(k − 1, l)],

I2(k, l) = 1
2 [I(k, l + 1)− I(k, l − 1)] and

I12(k, l) = 1
2 [I2(k + 1, l)− I2(k − 1, l)] as the discretiza-

tion schemes of
∂I

∂x1
,

∂I

∂x2
and

∂2I

∂x1∂x2
, respectively. Then,

equation(1) is discretized as follow:

Ψ2 [I(k, l)] = [2 [I(k, l)]2 − I(k − 1, l) I(k + 1, l)
− I(k, l − 1) I(k, l + 1)] + 2[I1(k, l) I2(k, l)
− I(k, l) I12(k, l)].

Let I(k, l) = a(k, l) cos(Ω1 k + Ω2 l) be a discrete image

with a slowly varying amplitude. Then, thanks to [2] and

under realistic assumptions [8], we have:

Ψ2 [I(k, l)] ≈ [a(k, l)]2 (sin(Ω1) + sin(Ω2))
2

(11)

Ψ3 [I(k, l)] = 0 (12)

Ψ4 [I(k, l)] ≈ − [a(k, l)]2 (sin(Ω1) + sin(Ω2))
4

(13)

We have also the relations ∀i = 1, 2:

Ψ2 [Ii(k, l)] ≈ [a(k, l)]2 [sin(Ωi)]
2 (sin(Ω1) + sin(Ω2))

2

(14)

Ψ2 [I12(k, l)] ≈ [a(k, l)]2 [sin(Ω1)]
2 [sin(Ω2)]

2×
(sin(Ω1) + sin(Ω2))

2
(15)

Ψ4 [Ii(k, l)] ≈ − [a(k, l)]2 [sin(Ωi)]
2 (sin(Ω1) + sin(Ω2))

4

(16)

Ψ4 [I12(k, l)] ≈− [a(k, l)]2 [sin(Ω1)]
2 [sin(Ω2)]

2 ·
(sin(Ω1) + sin(Ω2))

4
(17)

We finally get the AM and FM estimates respectively de-

noted by â(k, l), Ω̂1 and Ω̂2, by combining equations (11-

17). Thus:

|â(k, l)| =
√

Ψ2 [I1(k, l)] ·Ψ2 [I2(k, l)]
−Ψ4 [I12(k, l)]

(18)

|Ω̂1(k, l)| = arc sin

√
Ψ2 [I12(k, l)]
Ψ2 [I2(k, l)]

(19)

|Ω̂2(k, l)| = arc sin

√
Ψ2 [I12(k, l)]
Ψ2 [I1(k, l)]

(20)

Using equations (4) and (7) yields:

φ4 [I(x1, x2)] = −φ2 [∂1I(x1, x2) + ∂2I(x1, x2)]

Finally, equation (18) can be rewritten as:

|â(k, l)| =
√

Ψ2 [I1(k, l)] ·Ψ2 [I2(k, l)]
Ψ2 [I1

12(k, l) + I2
12(k, l)]

(21)

where I1
12(k, l) = 1

2 [I12(k + 1, l)− I12(k − 1, l)], and

I2
12(k, l) = 1

2 [I12(k, l + 1)− I12(k, l − 1)].
From now on, formulas (18-21) will be referred to as

DHODA (Discrete Higher Order Demodulation Algorithm).

III. NUMERICAL RESULTS.
The DHODA is applied to both synthetic and real mono-

component images. We first apply the proposed algorithm

on the synthetic image I defined by:

I(m, n) = 0.5[1 + 0.5 cos(mπ/30 + nπ/50)] cos[mπ/3
+ nπ/5 + 2 cos(mπ/30) cos(nπ/50 + π/2)]

where m, n ∈ {1, 2, . . . , 100}.
AM and FM components of I obtained with the DHODA are

shown in Fig. 1. Because the DESA [8] gives qualitatively

the same demodulation results, it was better to evaluate the

demodulation errors with the two different demodulation

methods. Errors are calculated according to the L2 norm, the

MSE (Minimum Squared Error) and their relative variances.

As shown in Table 1, approximation errors are much more

lower with the DHODA than the DESA [8].

The DHODA is also applied on some real narrowband

images, the square image (Fig. 2-(a)) and two sonar images

(Figs. 2-(e) and 2-(i)). In addition to the conditions of narrow

band and slowly varying amplitude, we add the hypothesis
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of a null mean. Practically, we substract from the image its

mean. As also noticed in [8], some pixels’ energy yields

negative values. Maragos and Bovik [8] suggested to set all

negative values to zero. In the presented work, we apply

a window averaging scheme in the neighborhood of the

pixel that gives a negative value. Also, before demodulating

the real monocomponent images, we apply a median filter

as a pre-processing. Just pointing out that the same pre-

processing is applied to all the demodulation techniques

that will be discussed below. The AM components of the

square image obtained also with the DESA [8] and the AI

[9] are shown in Fig. 2. As one notices, the AM component

obtained with the DHODA (Fig. 2-(d)) captures the dark

square and segments it. In Figs. 2-(b) and 2-(c), we display

the AM parts obtained respectively with the DESA [8] and

the AI [9]. Remark that the segmentation of the dark square

could be a difficult task for other segmentation techniques.

To illustrate that fact, we use an image thresholding method

for a segmentation issue. Fig. 3-(b) shows the thresholded

image based on the bimodal histogram (Fig. 3-(a)). Notice

the noise artefacts on the dark square, the image background

and the image borders.

There are three major parts in the sonar images (Figs.

2-(e) and 2-(i)): the echos, the mines’ shadows and the

sea-bottom reverberations. The AM components are again

conclusive for the segmentation of the main parts in such

images, the mines’ shadows (Figs. 2-(h) and 2-(l)). Figs. 2-

(f) and 2-(j), and Figs. 2-(g) and 2-(k) show the AM parts

obtained respectively with the DESA [8] and the AI [9],

for the first and second sonar image (Figs. 2-(e) and 2-

(i)), respectively. We recall that the AM component holds

the information about textures’ contrast, that is the intensity

disparity between the dark and bright textures. We do not

expect the AM to segment any part in the image while using

the DESA [8] or the AI [9], but we just put forward the

additional and relevant texture information brought out by

the 2D HOTKO. To display the FM counterparts, we use

needle diagram plottings, which are much more expressive

[9], [14]. The diagrams are composed of arrows. For every

pixel, an arrow is drawn at the pixel’s neighborhood for

clarity. The arrow originates from that pixel, and terminates

by an arrowhead. The length of the arrow is inversely pro-

portional to the FM’s magnitude. With this displaying style,

image frequencies make much more sense and are much

more conclusive, in comparison to the Fourier transform. For

the square image (Fig. 2-(a)), we have, as expected, small

arrows of same orientations all around the black square,

which traduce high frequencies area (Fig. 4-(a)). And we

have large arrows with also the same orientations inside the

black square, which means low frequencies (Fig. 4-(a)). That

is coherent because it is an homogeneous zone. Because of

the texture characteristics of the sonar images (Figs. 2-(e)

and 2-(i)), the FM components are composed, as expected

again, of very small arrows all around the mines’ shadows

Table I. DHODA and DESA approximation errors.

MSE(a, â) ‖a− â‖2 var

„
a− â

a

«
DESA 0.0119 10.9278 0.0415

DHODA 9.9617· 10−4 3.1562 0.0044

MSE(Ω1, Ω̂1) ‖Ω1 − Ω̂1‖2 var

 
Ω1 − Ω̂1

Ω1

!

DESA 0.0483 21.9681 0.0418

DHODA 0.0092 9.5979 0.0093

MSE(Ω2, Ω̂2) ‖Ω2 − Ω̂2‖2 var

 
Ω2 − Ω̂2

Ω2

!

DESA 0.0164 12.8214 0.0387

DHODA 0.0059 7.6501 0.0146
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Fig. 1. Real: AM (a). Horizontal FM (b). Vertical FM (c).

Estimates: AM (d). Horizontal FM (e). Vertical FM (f).

(Figs. 4-(b) and 4-(c)). This indicates very high frequencies

in those zones, which makes sense. On the contrary, we

have large arrows in the areas corresponding to the mines’

shadows (Figs. 4-(b) and 4-(c)). This means that we have low

frequencies in those areas which also makes sense, because

of the homogeneousness of those zones.

IV. CONCLUSION
A new algorithm based on 2D HOTKO is brought out. The

proposed DHODA performs far better than the DESA [8].

Indeed, as confirmed in Table 1, approximation errors on

both the amplitude and frequencies are much more lower.

In addition, for the real monocomponent images used in

our experiments, the 2D HOTKO bring relevant additional

texture information that cannot be carried out by the TKEO.

AM obtained with the DHODA capture the most important

part in the sonar images presented, and segment the mines’

shadows. The segmentation of mines’ shadow is very im-

portant for civil and military applications. We finally show

the coherence between frequencies and images.
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(i) (j) (k) (l)

Fig. 2. From left to right: first column: original images;

second: AM with DESA; third: AM with AI; fourth: AM

with DHODA.
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Fig. 3. Histogram of the square image (a). Image thresholded

(b).

(a) (b) (c)

Fig. 4. FM modulus needle diagram plottings of Figures:

2-(a) (a). 2-(e) (b). 2-(i) (c).

for providing the needle diagram codes.
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