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ABSTRACT 
 
This paper studies the idempotence of H.264 intraframe 
multi-generation coding. We analyze the H.264 transform 
and quantization and reveal that for some quantization 
parameters there always exists at least one clipping 
compensation matrix to make the H.264 intraframe multi-
generation coding idempotent as long as the same prediction 
mode and the same quantization parameter are selected for 
each coding generation. In addition, an idempotent H.264 
intraframe multi-generation coding procedure is presented. 
 

Index Terms—H.264, multi-generation, idempotent 
 

1. INTRODUCTION 
 
Multi-generation coding is a repeated compression and 
decompression process of videos [1]. In the case of lossless 
compression, the re-compressed and re-decompressed video 
sequence is exactly identical to the original one. For lossy 
compression, it can be idempotent, i.e. the video sequence 
reconstructed at each decompression cycle is identical to the 
one after the first decompression stage. In some applications, 
e.g. a video editing system, idempotence is desirable. 
However the idempotence is usually not satisfied for the 
current JPEG and MPEG standards [2], [3]. Nowadays, the 
H.264 applications range from portable devices to HDTV. 
As the office/home multimedia networks become pervasive, 
it becomes more common that video contents need to be 
encoded and decoded multiple times during their lifetime 
[4], [5]. Therefore, idempotent H.264 coding is becoming 
an important issue. The idempotence of H.264 like hybrid 
video coding has been studied in [5] and it is shown that 
H.264 multi-generation coding can have 2 ~ 4 dB PSNR 
drop after 3 generations in some cases. This paper analyzes 
the H.264 quantization (Qu), transform (Tr), inverse-
transform (ITr) and dequantization (DQu), and proves the 
quadruple (Qu, Tr, ITr, DQu) to be idempotent for some 
quantization parameter (QP). Based on the idempotence of 
the quadruple (Qu, Tr, ITr, DQu), we present an idempotent 
H.264 coding architecture. In addition, an idempotent H.264 
intraframe multi-generation coding procedure is presented. 

Section 2 gives the fundamental of idempotent H.264 
coding. In section 3, we present an idempotent H.264 
intraframe coding procedure, followed by experimental 
results in section 4. Conclusions are given in section 5. 

2. FUNDAMENTAL OF IDEMPOTENT H.264 
 

 
Fig. 1. Idempotent H.264 multi-generation architecture 

 
Without loss of generality, we consider only the 1st and 2nd 
coding generations of the idempotent H.264 intraframe 
multi-generation coding architecture proposed in Fig. 1. In 
this paper, we assume the deblocking loop filter is disabled 
and discuss baseline and main profile cases. Since entropy 
encoding and decoding are lossless, we have removed them 
for simplicity. OP is the original picture. CRP1 and CRP2 
are reconstructed pictures of the 1st and 2nd coding, 
respectively. pr(pm, cs) is the intra prediction result 
depending on the prediction mode (pm) and the previously 
reconstructed neighboring samples (cs). Tr, ITr, Qu and 
DQu are defined as follows [6]: 

TTr( ) =X HXH                            (1) 
Tinv invITr( ) = ( )///64X H XH                   (2) 

15+qbitsQu( ,QP) = sign( )(| | (QP) + f)//2X X X M     (3) 
qbitsDQu( ,QP) = 2 (QP)X X V              (4) 

where  denotes element-by-element multiplication, M(QP) 
and V(QP) are quantization and de-quantization matrices 
indexed by QP, qbits = QP//6, f is equal to 15+qbits2 //3 or 
equal to 16+qbits2 //3 for the DC quantization, H and Hinv are 
forward and pseudo-inverse transform matrices [6], the 
symbol // denotes division with rounding towards minus 
infinity and /// denotes division with rounding towards 
nearest integer. It can be seen that the major difference 
between the proposed idempotent H.264 coding and the 
traditional H.264 coding is that we introduce a clipping 
compensation matrix (CCM) during the 2nd encoding 
generation. The value of the CCM will be found during the 
2nd encoding generation to make the coding idempotent, i.e.: 

CRP1 = CRP2.                                 (5) 
All the signals, such as OP, CRP1, CRP2 and CCM are 
typically in the format of matrices with finite word length. 

1033978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



2.1. The existence of CCM 
 
There always exists a CCM to make the H.264 multi-
generation coding system shown in Fig. 1 idempotent, if 
during the 2nd encoding, QP2 and pm2 are selected to satisfy: 

QP2 = QP1, pm2 = pm1                             (6) 
and the quadruple (Qu, Tr, ITr, DQu) of the coding system 
satisfies the idempotence: 

Qu( Tr( ITr( DQu( A1, QP1 ) ) ), QP2 ) = A1           (7) 
where QP1 and pm1 are the quantization parameter and 
prediction mode of the 1st coding generation, and QP2 and 
pm2 are those of the 2nd coding generation. 

First, notice that cs1 = cs2, if the previously 
reconstructed neighboring macroblocks are idempotent. So, 
in the case of pm2 = pm1, we have 

pr(pm1, cs1) = pr(pm2, cs2).                      (8) 
Applying ITr, DQu to both sides of (7) and hiding QP1 and 
QP2 which are equal to each other, we get 

1 1ITr(DQu(Qu(Tr(ITr(DQu( )))))) = ITr(DQu( ))A A .  (9) 
Substituting 1 1ITr(DQu( ))TD A into (9) yields 

1 1ITr(DQu(Qu(Tr( )))) =TD TD .                 (10) 
From Fig. 1, we have 

D2 = CCM + CRP1 – pr(pm2, cs2)                (11) 
1 1 1 1clip( +pr(pm ,cs ))CRP TD                   (12) 

2 2 2 2clip( ITr(DQu(Qu(Tr( ))))   pr(pm ,cs ) )CRP D . (13) 
Substituting (10) into (12) gives 

1 1 1 1clip( ITr(DQu(Qu(Tr( )))) + pr(pm ,cs ) )CRP TD .  (14) 
Comparing (13) with (14), and considering (8), we only 
need 2 1D TD  to satisfy 1 2CRP CRP . Then from (11), 
we obtain CCM given by 1 1 1 1= pr(pm ,cs )CCM TD CRP . 

Therefore, there always exists at least one CCM to 
make the multi-generation coding system idempotent, if (6) 
and (7) are satisfied. 
 
2.2 The idempotence of the quadruple 
 
Eq. (7) reveals a basic and important property that the 
quadruple must have for idempotence. It can be shown that 
for certain QP values, (7) does hold. 

Generally, a finite precision division can be factored 
into an infinite precision division and a rounding fraction: 

divc=a//b= a b -frac      div0 frac 1              (15) 
rouc=a///b= a b +frac    rou-0.5 frac 0.5        (16) 

Luma 4×4 Case 
From (2), (3), (15) and (16), and without loss of 

generality assuming X  0, (3) and (2) become 
15+qbits qQu( ,QP) = ( (QP) + f)/2X X M frac        (17) 

Tinv 1 2 3invITr( ) = (( ) ) / 64X H X + frac H frac frac  (18) 
where • denotes the matrix multiplication with infinite 
precision. 0  fracq< 1, -0.5  frac1, frac2, frac3  0.5. We 
can rewrite (18) as 

Tinv invinvITr( ) =X H X H / 64 + frac              (19) 

where | | ( ) / 64 | 137 256Tinv 1 2 3inv| frac frac H frac frac . 
Substituting (19) into (1), and simplifying, 

tTr(ITr( )) = / 64 +X X K frac                     (20) 

where
16 20 16 20
20 25 20 25= 16 20 16 20
20 25 20 25

K , and 

t

16 24 16 24
24 36 24 36| | ) | 16 24 16 24
24 36 24 36

T
inv inv| frac H (frac H frac . 

Substituting (4) and (20) into (17) and hiding QP1 and QP2 
which are equal to each other, we get 

Qu(Tr(ITr(DQu(A1)))) = A1 + FRAC             (21) 
where 

21
1 1

15+qbits 15 qbits
t q

(QP) (QP) / 2
(QP)/2 f 2

FRAC A V K M A
             + frac M + frac

. 

In (21), since all elements of 1Qu(Tr(ITr(DQu( ))))A and 
1A are integers, it only needs -1 < FRAC < 1 to satisfy (7). 

Assume the coding bitdepth is 8-bit, then the 
residual 1 | 255| D . From Fig. 1, we have 

1

255 255 255 255 16 24 16 24
255 255 255 255 24 36 24 36Qu( , QP)255 255 255 255 16 24 16 24
255 255 255 255 24 36 24 36

| A | . 

Since M, V and K are all constant matrices. 
Substituting all the QP values into FRAC, it can be verified 
that (7) is satisfied when QP1 = QP2  21.  
Chroma 8×8 Case 

In the case of chroma 8×8, the AC coefficients can be 
verified as same as those of luma 4×4 ones. However, the 
case of 2×2 DC coefficients is different. 

For the quantization of the DC coefficients matrix 
DC2x2A , firstly the 2×2 Hadamard transform is applied: 

T
2 2 2 2 DC2 2 2 2Z G A G                       (22) 

where 2 2G is 2×2 Hadamard matrix. Then the 2×2 DC 
quantization is applied; that is, 

16 qbitsDC 2 2 2 2 2 2 DCQu ( ) = sign( )( (QP) f )//2Z Z Z M .(23) 
For the dequantization of DC2x2A , firstly, the 2×2 

Hadamard transform defined in (22) is applied. Then the 
2×2 DC dequantization is applied; that is, 

qbits-1
2 2 DC

DC 2 2
2 2 DC

2 (QP)  QP 6DQu ( )
(QP)//2            QP<6

Z VZ
Z V

.  (24) 

From (20), we get the pair (Tr, ITr); that is 
2 2 2 2 DC tTr(ITr( )) = / 64 +Z Z K frac              (25) 

where DC
16 16
16 16K , MDC and VDC are DC quantization 

and de-quantization matrices indexed by QP. From (22) to 
(25) and (15), (16), it can be verified that for all QP1 = QP2 

 27, DC DC DC2 2 DC2 2Qu (Tr(ITr(DQu ( )))) =A A . 
So, in conclusion, for chroma 8×8, (7) is satisfied when 

QP1 = QP2  27. 
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Luma 16×16 Case 
Similar to the case of chroma 8×8, it can be verified 

that for luma 16×16, (7) is satisfied when QP1 = QP2  33. 
Therefore, for the proposed H.264 coding architecture, 

if QP  21, QP  27 and QP  33 for luma 4×4, chroma 8×8, 
and luma 16×16, respectively, then there always exists a 
CCM to achieve idempotence as long as the 2nd coding has 
the same QP and prediction mode as the 1st coding. For 
example, a two generation coding of a 4×4 block in the 
QCIF sequence Mobile is shown in Fig. 2, QP1 = QP2 = 21 
and pm1 = pm2 = Horizontal. (a) shows the original block, 
OP in Fig. 1, and the reconstructed neighboring samples. (b) 
shows the 1st coding residual D1. (c) is the reconstructed 
block before clipping, TD1 + pr(pm1, cs1). (d) is the decoded 
block of the 1st coding CRP1 which is also the input of the 
2nd coding. (e) is the 2nd coding residual. There exists a 
CCM = TD1 + pr(pm1, cs1) – CRP1 shown in (f). (g) is the 
clipping compensated residual D2 given by D2 = CCM + (e). 
(h) shows the decoded result of the 2nd coding CRP2 by 
encoding and decoding D2. It can be seen that the two 
generation coding is idempotent since (h) is identical to (d). 

 
Fig. 2. Illustration of a two generation coding 

 
3. AN IDEMPOTENT H.264 CODING PROCEDURE 

 
Based on the discussion of section 2, this section presents an 
idempotent H.264 intraframe coding procedure as shown in 
Fig. 3. The procedure has three additional steps to achieve 
idempotence: Prediction Mode and QP Restriction (PMQR), 
Prediction Mode and QP Identification (PMQI) and 
Clipping Compensation (CC). 

 
Fig. 3. Idempotent H.264 coding procedure 

 
3.1. PMQR 
 
In general, a macroblock (MB) can be encoded using either 
luma 16×16 or luma 4×4 together with chroma 8×8 and the 
QP can take values from 0 to 51. However, for idempotence, 
PMQR must be applied during the 1st encoding. PMQR 
means that the luma QP  21, the chroma QP  27 and only 
Intra 4×4 prediction mode can be used when 21  QP < 33. 

 3.2 PMQI and CC 
 
PMQI and CC are used to find pm2, QP2 and CCM to 
satisfy (5). From (11) and Fig. 1, (5) is equivalent to 

2 2 2 2 2 2clip( + pred(pm ,cs )) = - + pred(pm ,cs )TD D CCM . (26) 
Considering the clipping operation, (26) is equivalent to 

2 2 1

2 2 1

2 2

, , - , ,     , 255
, , - , ,     , 0
, , - , ,   Others

i j i j i j i j
i j i j i j i j
i j i j i j

TD D CCM CRP
TD D CCM CRP
TD D CCM   

. 

We define a function n nSD  (pm, QP, CCM) as follows: 
n

n n 2 2
, 0

SD (pm , QP , ) = ,
i j

i jCCM SEEC            (27) 

where n = 4, 16 and 8 for luma 4×4, luma 16×16 and 
chroma 8×8 respectively, and 

2 2 1

2 2 1
2

2 2

, =
u( , - , + , )  , = 255
u( , - , - , )   , = 0
( , - , - , )     Others

i j

i j i j i j i j
i j i j i j i j

i j i j i j

SEEC
TD D CCM CRP
D TD CCM CRP

D TD CCM

 

where 0         0u( ) -     Others
xx x . 

Since (5) is equivalent to n nSD  = 0, PMQI and CC are 
to find a triple of pm2, QP2 and CCM to satisfy n nSD  = 0 
instead of (5). If no clipping occurs, i.e. CCM = 0, one 
obvious method to identify pm2 and QP2 is to try all 
possible pm2 and QP2, which make n nSD = 0. Then search 
through all possible prediction modes and QP to evaluate a 
traditional mode selection criterion, e.g. SAD, and select 
one candidate which minimize the SAD. However, clipping 
always occurs in practice. Thus, one key issue of 
idempotent coding is to find the CCM. One way is to find 
the root of equation n nSD = 0. But it’s hard to solve such a 
high dimensional nonlinear equation. Experimental results 
show that there are more than one CCM satisfying n nSD  = 
0. So, it’s easier to formulate the solution of CCM as an 
optimization problem. In this paper, the genetic algorithm 
(GA) [7] is employed. The flow chart of PMQI and CC is 
shown in Fig.4. In this implementation, the PMQI and CC 
based on GA are only applied in the unit of 4×4 sub-blocks 
for efficiency. The cost function [7] is (27). The 
chromosome [7] includes pm2 and CCM. First, the MB is 
partitioned into 4×4 sub-blocks. If all the sub-blocks clipped, 
the current MB will be encoded as I_PCM mode for the GA 
optimization efficiency. Otherwise, PMQI finds the QP of 
the current MB by searching through all the possible 
prediction mode and QP in the no clipped sub-blocks. Then 
GA-based PMQI and CC are applied for the clipped sub-
blocks. It turn out that even some clipped sub-blocks have 

n nSD = 0 when CCM = 0, pm2 = pm1 and QP2 = QP1, thus 
GA is not needed. We name these sub-blocks GA bypass 
ones if a pm2 satisfying n nSD = 0 can be found by searching 
through all the possible prediction modes when CCM = 0. 
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Fig. 4. PMQI and CC flow chart 

 
4. EXPERIMENTAL RESULTS 

 
We modified JVT JM14 to develop an idempotent H.264 
encoder. The new encoder performs PMQR in the 1st 
coding generation and PMQI and CC instead of the 
traditional prediction mode selection in the higher coding 
generations. Using the idempotent encoder, two 720P test 
sequences Crew and Parkrun are compressed 10 generations 
consecutively in the following two experiments comparing 
with JM14 in the same multi-generation environments. The 
performances of GA-based PMQI and CC are evaluated. 
Experiment A 

Coding parameters: ChromaQPOffset = 6, Bitrate = 9.5 
Mbps, CAVLC, RDO = 1, Error metric for Mode Decision 
= SAD, Disable Deblocking Filter, IntraPeriod = 1, 
FrameRate = 30. The test sequence is the first 50 frames of 
Crew. In this experiment, Luma QP = 21, 23, 24, 25, 26, 27, 
31 and 35. Chroma QP = 27, 29, 30, 31, 32, 34 and 36. The 
PMQR ensures only the Intra 4×4 prediction modes are 
selected when QP < 33. The asterisk line of Fig. 5 illustrates 
PSNR performance of the proposed idempotent coding 
procedure while the square line shows that of JM14. Fig. 5 
shows that the idempotent H.264 coding procedure has no 
quality degradation when doing re-compression while JM14 
brings about 2.69 dB PSNR degradation after 9 generations. 
It also shows that PMQR cause very small PSNR difference 
(0.02 dB) between the idempotent coding and the 1st coding 
of JM14. There is no clipping occurring in the experiment. 
Experiment B 

Coding parameters: ChromaQPOffset = 6, Bitrate = 35 
Mbps, CAVLC, RDO = 1, Error metric for Mode Decision 
= SAD, Disable Deblocking Filter, IntraPeriod = 1, 
FrameRate = 30.  The test sequence is the first 50 frames of 
Parkrun. In this experiment, Luma QP = 25, 29, 32, 33, 34 
and 36. Chroma QP = 30, 33, 35, 36 and 37. Fig. 6 shows 
that JM14 has about 3.62 dB PSNR degradation after 9 
generations while the idempotent encoder has no quality 
degradation. Table I shows that there are 7951 clipped sub-
blocks, and 7947 of them are GA bypass ones. There are 4 
sub-blocks need GA searching to find a CCM. All the GA 

optimization routines successfully return within 50 GA 
generations. 

 

5. CONCLUSION 
 

In this paper, we analyze the idempotence of H.264 and 
present an idempotent H.264 intraframe multi-generation 
coding architecture. Based on the proposed architecture, we 
present an idempotent H.264 coding procedure. Experiment 
results show that for some of the coding parameters, the 
proposed idempotent H.264 coding procedure produces no 
generation PSNR loss. The idempotent H.264 encoder has 
some restriction on QP values, but most QP values used in 
common applications are still allowed and the impact of the 
restriction on coding efficiency is minor. Our further work 
will focus on the idempotent multi-generation coding both 
in intra and inter frames with deblocking loop filter. 
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Fig. 5.Experiment A Fig. 6. Experiment B

Table I PERFORMANCE OF CC IN EXPERIMENT B 
Clipped 

Sub-block(s)
GA 

Bypassed 
GA 

Success 
I_PCM

MB 
7951 7947 4 0 
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