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ABSTRACT

We consider the problem of lossy compression of images using
sparse representations from overcomplete dictionaries. This prob-
lem is in principle easy to solve using standard algorithms for
convex programming, but often the large dimensions render such an
approach intractable. We present a highly efficient method based on
recently developed first-order methods, which enables us to com-
pute sparse approximations of entire images with modest time and
memory consumption.

Index Terms— Basis pursuit, sparse approximations, image
compression, convex optimization, first-order optimization algo-
rithms.

1. INTRODUCTION

Recently there has been tremendous resurge of interest in sparse
estimation techniques for signal processing based on �1 heuristics,
see e.g., the recent issue devoted to compressive sampling [1]. The
theory is by now well-established and much is known about cases
where the �1 heuristic coincides with the solution to the otherwise
intractable minimum cardinality solution, see [2] and references
therein.

Perhaps the best known method for sparse reconstruction is the
so-called basis pursuit algorithm, which solves the problem

minimize ‖z‖1
subject to Dz = y

where D ∈ RM×N represents an overcomplete dictionary (N >
M), z ∈ RN is the variable, and y ∈ RM is the signal we wish
to decompose into (as few as possible) dictionary elements or basis
vectors ofD.

In this paper, we consider efficient large-scale implementations
of a variation, namely the �1 compression problem

minimize ‖z‖1
subject to ‖Dz − y‖2 ≤ δ

(1)

where δ > 0 is a given fidelity or reconstruction error. For a single
orthogonal basis (i.e.,DT = D−1) the �1-compression problem can
be rewritten as

minimize ‖z‖1
subject to ‖z −DT y‖2 ≤ δ,
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which can be solved very efficiently even for very large instances
(due to the simple constraints) using a plethora of methods, e.g.,
standard primal-dual interior-point methods [3]. Many primal-dual
interior-point algorithms have proven worst-case iteration complex-
ity bound O(log(1/ε)), meaning that less than O(log(1/ε)) iter-
ations are required to produce an ε-optimal solution zε such that
‖zε‖1 − ‖z�‖1 < ε.

When D is not orthogonal the dimensions of typical images are
far too large for primal-dual interior-point implementations of the
�1 compression problem. This is because each iteration requires the
solution of an N ×N dense system of linear equations.

Alternatively, we could apply standard large-scale gradient or
sub-gradient methods with O(1/ε2) iteration complexity, where
each iteration is much cheaper compared to primal-dual interior-
point methods. However, the slow convergence rate renders such an
approach unattractive.

Instead, in this paper, we apply recently developed first-order
methods developed by Nesterov in a series of papers [4, 5] which
achieve remarkable O(1/ε) iteration complexity. These and related
modern gradient methods have recently been surveyed by Tseng [6]
in the context of minimization of sufficiently smooth functions with
O(
p

1/ε) iteration complexity. Nesterov’s method has recently
been applied to a series of large-scale problems [7, 8] including
total-variation image restoration [9, 10], but the application of �1
compression with overcomplete dictionaries causes additional diffi-
culties and has so far not been studied.

The remaining paper is structured as follows: in Sec. 2 we dis-
cuss Nesterov’s method tailored specifically for the �1 compression
problem. In Sec. 3 we give numerical examples of �1 compression
with several bases via Nesterov’s method for full-size images. Fi-
nally, we give discussions in Sec. 4.

2. NESTEROV’S METHOD FOR �1 COMPRESSION

Nesterov’s method is an efficient first-order method for solving
saddle-point problems of the form,

min
x∈Q1

max
u∈Q2

uT Ax

where Q1 and Q2 are bounded convex sets. From the definition of
the induced norm

‖x‖p = max
‖y‖q≤1

yT x,

where ‖x‖q is the dual-norm (i.e., 1
p

+ 1
q

= 1), the �1 compression
problem can be written as such a saddle-point problem,

min
‖Dz−y‖2≤δ

max
‖u‖∞≤1

uT z.

Since the dictionary D is generally overcomplete, the primal set
{z | ‖Dz − y‖2 ≤ δ} is not bounded, and we cannot immediately
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use Nesterov’s method. Instead we assume that the overcomplete
dictionary is comprised of a set of orthogonal (inverse) transforms
D−1

i ∈ RM×M , i.e.,

Dz =
ˆ

D−1
1 (z1) D−1

2 (z2) . . . D−1
K (zK)

˜
,

where zi ∈ RM , i = 1, . . . , K withK = N/M denote the different
subblocks of the vector of transform coefficients. To make the primal
set bounded we introduce the arbitrary bound

‖(z2, . . . , zK)‖2 ≤ γ

which does not alter the solution provided γ is chosen sufficiently
large. The resulting problem

min
z∈Q1

max
u∈Q2

zT u

where

Q1 = {z | ‖D(z)− y‖2 ≤ δ, ‖(z2, . . . , zK)‖2 ≤ γ}
Q2 = {u | ‖u‖∞ ≤ 1}

fits the framework for Nesterov’s method, but it appears difficult to
solve it efficiently in this form; the complexity of Q1 makes the
subproblems 2) and 3) in Nesterov’s method (discussed later in the
paper) as difficult to solve as the original �1 compression problem.
Instead we introduce a transform pair,

W =

2
6664

D1 −D1D
−1
2 · · · −D1D

−1
K

0 I · · · 0
...

...
. . .

...
0 0 · · · I

3
7775

W−1 =

2
6664

D−1
1 D−1

2 · · · D−1
K

0 I · · · 0
...

...
. . .

...
0 0 · · · I

3
7775

meaning that

W (z) =

 
D1(z1 −

KX
i=2

D−1
i (zi)), z2, · · · , zK

!

W−1(z) =

 
KX

i=1

D−1
i (zi), z2 , · · · , zK

!
.

We next introduce a change of variables,

x = W−1(z), (2)

and with a slight abuse of notation denote W (x), W−1(x) and
W adj(x) by Wx, W−1x and W T x, respectively, for the benefit
of a simpler notation in the following. We can now rewrite the
compression problem in a convenient form, that is

min
x∈Q′

1

max
u∈Q2

uT Wx (3)

where

Q′1 = {x | ‖x1 − y‖2 ≤ δ, ‖(x2, . . . , xK)‖2 ≤ γ}
Q2 = {u | ‖u‖∞ ≤ 1}

which is easier to solve using Nesterov’s method; in particular, the
solutions to subproblems 2) and 3) in the following can be found

analytically with complexityO(N). The associated dual problem of
(3) is

max
u∈Q2

−δ‖(W T u)1‖2 + yT (W T u)1 − γ‖(W T u)2:K‖2 (4)

where (W T u)1 denotes the first block of (W T u) and (W T u)2:K
denotes the remaining theK − 1 blocks, partitioned conformly with
x and z.

In the following we review the steps in Nesterov’s method for
solving (3). To both sets Q′1 and Q2 we associate so-called prox-
functions. As a prox-function for Q′1 we choose

d1(x) = (1/2)‖x1 − y‖22 + (1/2)

KX
i=2

‖xi‖22.

The prox-function is upper bounded by

Δ1 := max
x∈Q′

1

d1(x) =
γ2 + δ2

2
.

Similarly, as a prox-function for Q2 we choose

d2(u) = (1/2)‖u‖22

and upper bound

Δ2 := max
u∈Q2

d2(u) =
KM

2
.

As a smooth approximation for f(x) = ‖W (x)‖1 we use

fμ(x) = max
u∈Q2

{uT Wx− μd2(u)}

which bounds f(x) as

fμ(x) ≤ f(x) ≤ fμ(x) + μΔ2,

i.e., for ε = μ
2Δ2

we have an ε
2
-approximation of f(x). Furthermore,

it can be shown that fμ(x) has Lipschitz continuous derivatives with
constant Lμ = 1

μ
‖W‖22.

Nesterov’s first-order method for minimizing the strongly con-
vex function fμ(x) with Lipschitz continuous derivatives is given
below.

NESTEROV’S METHOD

given a feasible x[0] and a smoothing parameter μ = ε/(2Δ2).

for k ≥ 0

1. Evaluate g[k] = ∇fμ(x[k]).

2. Find

v[k] = arg min
x∈Q′

1

{(x− x[k])T g[k] +
Lμ

2
‖x− x[k]‖22}.

3. Find

s[k] = arg min
x∈Q′

1

{Lμd1(x) +

kX
i=0

i + 1

2
(x− x[i])T g[i]}.

4. Update x[k+1] = 2
k+3

v[k] + k+1
k+3

s[k].
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As a feasible starting point we can use x[0] = ( y, 0, . . . , 0). We
terminate the algorithm when the duality gap

‖Wx‖1 + δ‖(W T u)1‖2 − yT (W T u)1 + γ‖(W T u)2:K‖2 < ε.

Nesterov shows in [4] that it takes at most

Nit = 4‖W‖2
√

Δ1Δ2 · 1

ε

iterations for the algorithm to produce an ε-optimal solution. Using
the fact that the transforms Di are orthogonal (D−1

i = DT
i ), the

norm ‖W‖22 is easily found by considering the possible solutions λ
to the characteristic equation,

WW T x = λx

which shows thatWW T has only two distinct eigenvalues,

λ =
(K + 1)2 ±

p
(K + 1)2 − 4

4

i.e., ‖W‖22 =
(K+1)2+

√
(K+1)2−4

4
. Substituting the values of Δ1,

Δ2 and ‖W‖22, we get the iteration complexity bound for �1 com-
pression,

Nit =
“
(K + 1)2 +

p
(K + 1)2 − 4

”1/2 `
N(γ2 + δ2)

´1/2 · 1

ε
.

The three different sub-problems in Nesterov’s method are eas-
ily solved. In step 1) we evaluate∇fμ(x) = W T u where we find u
as the solution to

min
‖u‖∞≤1

(μ/2)‖u‖22 − uT Wx

which has a closed-form solution for the ith component (not to be
confused with the ith sub-vector),

ui = min{1, |(Wx)i/μ|}sign((Wx)i).

By simple changes of variables the solution to steps 2) and 3) can
both be found as the solution to simple quadratically constrained
problems

minimize wT w − 2cT w
subject to wT w ≤ δ2 (5)

with solution w = min{1, δ/‖c‖2}c.
A remaining issue is to find a bound on γ. ForK = 1 we obvi-

ously have that ‖z1‖2 ≤ ‖y‖2. For K = 2 the same bound can be
used for ‖z2‖2, where the bound can only be reached if z1 = 0 at op-
timality. In a similar fashion, we can argue that ‖(z2, . . . , zK)‖2 ≤
‖y‖2.

3. NUMERICAL EXPERIMENTS

We implemented the algorithm in the Python programming lan-
guage, and for orthogonal transforms we used the discrete cosine
transform in FFTW [11] and a 2D wavelet library [12]. For repro-
ducibility we have made the developed code for �1 compression
available for download [13].

3.1. Quality of the approximation

An issue often reported in large-scale implementations of sparse �1
approximations is that a high accuracy is required to achieve a sparse
solution. In the first experiment we compare the quality of the solu-
tion as a function of ε with that of MOSEK [14], a state-of-the-art
commercial convex optimization solver based on a primal-dual in-
terior point algorithm. Thus, by using a primal-dual interior point
method we get a very accurate reference solution, but we are only
able to solve problems with small images.

For different values of ε we randomly generate 100 8bit images
of dimensions 32 × 32 with values between 0 and 255 and we then
compute the solution to (3) using Nesterov’s method with a value δ
corresponding to PSNR=40dB, and we compare the obtained solu-
tion with that of MOSEK.

In the examples we use an overcomplete dictionaries formed by
two orthogonal transforms; a discrete Haar wavelet transform with
two decomposition levels, and a discrete Symlet4 wavelet transform
also with two decomposition levels.

ε ·KM

10−3 5 · 10−4 10−4 5 · 10−5 10−5

NEST 1027.7 995.7 963.2 961.7 959.5
MOSEK 956.3
MP 1102.0

Table 1. Average number of non-zero transform coefficients out of
a total of 2 · 322 = 2048 coefficients.

Table 1 shows the average number of non-zero transform co-
efficients for Nesterov’s method and MOSEK, and for comparison
we also show the average number of non-zero transform coefficients
needed by the standard matching pursuit algorithm [15] to achieve
PSNR=40dB. To count the number of transform coefficients pro-
duced by MOSEK and Nesterov’s method we need to truncate the
result in order to remove very small coefficients; this truncation re-
sulted in degradation of the reconstruction of approximately 0.3dB.
From the table we see that for moderately high accuracies the spar-
sity of the solution computed with Nesterov’s method is comparable
to the MOSEK solution, but as ε increases the number of nonzero
coefficients also increases.

In the table we specify a relative accuracy normalized by the
number of variables; a similar normalization of accuracy by the num-
ber of variables is used in most practical optimization solvers includ-
ing MOSEK.

3.2. Large-scale studies

In the next example we illustrate the performance of Nesterov’s
method for two standard 512 × 512 grey-scale test-images, namely
LENA and BOAT. In the example we show the effect of increasing
the number of bases.

Table 2 shows the number of iterations used by Nesterov’s
method and the resulting ‖z‖1 objective as well as the number of
non-zero coefficients of the solution after the truncation of non-zero
coefficients (called ‖z‖0). For comparison we also show the number
of non-zero coefficients of the solution produced by the standard
matching pursuit using two bases. The bases used in the experiment
were: D1: DCT, D2: Symlet8 pyramid transform with 6 levels,
D3: Symlet8 standard transform with 4 levels, and D4: Symlet16
standard transform with 3 levels, i.e., MP2 and NE2 used D1 and
D2, NE3 usedD1,D2, andD3, etc.

1011



It ‖z‖1 ‖z‖0
MP2 38949 6247.1 38949
NEST2 3882 5229.9 56205
NEST3 4043 4848.4 61379
NEST4 4244 4402.3 55240
MP2 75468 7735.0 75468
NEST2 2556 6420.8 115798
NEST3 2778 5817.7 121364
NEST4 3378 5279.4 109166

Table 2. Sparsity of solutions z for large images for PSNR=40dB
with ε = 10−4 ·KM . Top rows show results for standard LENA test
image, and bottom rows show results for standard BOAT test image.
NESTK: Nesterov’s method withK bases, MPK: matching pursuit
withK bases. “It” is the number of iterations used.

From the example we observe that the �1 measure decreases as
we add redundancy to the dictionary by increasing the number of
bases. Similarly, the compression rate defined as the ratio of the
number non-zero transform coefficients and total number of trans-
form coefficients generally increases as we use more bases.

From the table we observe the somewhat discouraging phe-
nomenon that even though the �1 objective decreases as we use
more bases the cardinality of the solution does not decrease corre-
spondingly. Also, in these examples matching pursuit is actually
superior to �1 compression in terms of sparsity, but the number of
iterations is significantly higher for the matching pursuit method;
the standard matching pursuit method requires K + 1 transforms
per iteration, whereas Nesterov’s method requires an evaluation
of W (x) and W adj(x) amounting to a total of 3K transforms, so
the overall complexity of Nesterov’s method is much lower than
matching pursuit (due to a much lower number of iterations).

4. DISCUSSIONS

In this paper, we developed an efficient first-order scheme for �1
compression of images using overcomplete dictionaries. The over-
complete dictionaries are formed by combining orthogonal trans-
forms (i.e., they work as operators) and thus have modest memory
requirements.

Our approach of combining transforms is by no means unique.
The only requirement is that the augmented transform is invertible,
so that we can perform the variable change in (2). For example, for
two orthogonal transformsD1 andD2 a straightforward approach is
to define the transform pair as

W−1 =
1√
2

»
D−1

1 D−1
2

−D−1
1 D−1

2

–
, W =

1√
2

»
D1 −D1

D2 D2

–
,

resulting in a lower iteration complexity bound since ‖W‖2 = 1.
Similarly we can augment the transform for any K = 2l. The con-
cept presented in this paper works for anyK ≥ 1, however.

We have demonstrated that �1 compression for large-scale image
coding is in fact tractable; this has so far not been the case with tradi-
tional approaches based either on large-scale subgradient schemes,
or interior-point with iterative large-scale linear equation solvers.

One experimental observation we have made is that �1 compres-
sion using multiple bases often distributes the transform coefficients
evenly across several bases, which is obviously suboptimal seen
from a coding perspective. One approach to alleviate this problem is
to solve several �1 compression problems with different weights on

the transform coefficients in the cost function, as proposed by Can-
des et al. in [16]. Preliminary experiments using this scheme show
promising results, e.g., using the reweighting for the compressing
LENA with two bases (cf., Table 2) reduces the number of transform
coefficients from 56205 to 32959, which is better than matching
pursuit in terms of coding gain. The price paid for this substantial
improvement is that we must solve several �1 compression prob-
lems; in this particular case we solved 6 problems. It is therefore
expected that (improved) �1 compression algorithms for images will
be more efficient than matching pursuit both in terms of complexity
and coding gain.

Studies [17] show that the resulting bit-rate is largely propor-
tional to the sparsity of the solution, but more detailed coding con-
siderations would be an important topic for future studies; coding of
sparse transforms is largely undeveloped [18], whereas state-of-the-
art coding for wavelet transforms (e.g., [19]) is highly sophisticated.
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