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ABSTRACT

A new method for template-based image alignment is
presented in this paper. A gradient-based optimization of
motion compensated error difference is addressed to solve
the image alignment problem. Its novelty lies in the
minimized error, which considers the bi-directional
compensation of the reference template and the current
image onto each other in a constrained asymmetrical
fashion. The proposed approach is shown to be a
generalization of previous state-of-the art gradient-based
methods. An experimental evaluation is provided to show
how the new method outperforms the former in presence of
noisy images, and to give some insights into its properties.

Index Terms— Image registration, template matching,
gradient-based methods, bi-directional motion
compensation, asymmetric constraint.

1. INTRODUCTION

Motion estimation is a fundamental task of many vision
applications such as object tracking, video compression,
augmented reality or image mosaicking. Among the existing
approaches to evaluate motion, template matching is a
natural way to estimate the parameters that best warp one
image onto the other. The optimum is conventionally found
by minimizing the displaced frame difference between a
reference template and a current image.

One of the reference algorithms was proposed by Lucas
and Kanade for optical-flow computation [1]. Baker and
Matthews summarized and compared many template-based
approaches in [2]. Their taxonomy of the methods was
extended in [3] in order to take into account recent
approaches that proved to yield better convergence and
robustness performances: the Efficient Second-Order
Minimization (ESM) algorithm [4] and the Symmetric
Gradient Method (SGM) [5]. These methods weight
symmetrically the gradients of both images when estimating
the update of motion parameters, which yields faster
convergence and improved robustness. Both authors have
given theoretical justification for these performances when
the two images are equal up to motion compensation. In
presence of noisy images, this assumption does not hold
anymore.
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When one or both images are corrupted by different
amount of noise, the gradient of both images do not have to
play a symmetric role. In this paper, a new method is
developed that unifies and extends existing approaches. It
allows us to improve the performances by weighting
asymmetrically the gradients of the two images.

The paper is organized as follows. In section 2 we
provide a short review of existing algorithms. In section 3
we introduce the new method and show how it subsumes the
existing ones. In section 4, after recalling the principles of
the performance evaluation, we show experimental results
and discuss the properties of the proposed approach.

2. ANALYSIS OF RELATED WORK
2.1. Algorithmic scheme

Image alignment between a reference template 7 and a
current image / can be formulated as finding motion

parameter vectors (u; ur) that minimizes a motion
compensated error:
E(ar) = e oir) | (1)
i

where u.r is fixed, and e; represents the error at pixel x;
between the two motion compensated images / and 7:

ei(/-ll’/-lT): [(f(/u[’xi))_ T(f(ﬂT,xi)) (2)

In the sequel, the motion model f'is assumed to exhibit group
properties. Its group properties are extended to its parameter
space using the following compositional notations:

f(ﬂl"ﬂz,x):f(ﬂl,f(ﬂz’x)) (3)
flutx)=yox=fluy) 4)

The gradient-based methods of interest [1-6] obey the
general scheme of iterative Gauss-Newton approaches:

Step 1) Define initialization parameters x” and s

Step 2) Express the motion parameters w.r.t. an incremental
correction parameter vector JSu: ;= u;(uk,ou) and

tr = pr(Uer o). Compute du by using one step of
gradient based optimization of £
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o=~ Ttk ) (5)
where J is the Jacobian w.r.t. du of the pixelwise error
vector e formed by stacking all e; vertically.

Step 3) Use the generic update rule introduced in [3] to
obtain the estimated parameters:

k+1

W=y (*,0p)° Hr (/lre_‘f o) o Hyep (6)

Step 4) Repeat steps 2) and 3) until convergence
2.2. Categories of approach

Gradient based approaches have been shown in [3] to be
equivalent to the first order in the estimated du within each
of the following categories: Forwards, Inverse, and
Symmetric. We will therefore consider only one approach
within each category.

The Forwards Compositional (FC) approach [6] uses
py = ¥ o duand up = tyer - Plugging these expressions into
(2) and computing its derivative yields the following
Jacobian:

JFC(x; ) = J;?C(xi) _ Ol(f(u* o oux;)) (7

65,u ou=0

The Inverse Compositional (IC) approach [2] is related [3]
to u; = u¥and uy = Hyef © su”", that yields

Tty © S10x,))|

JC(x;)= J7I"C(xi) = o

®
|5,u=0

The Symmetric Compositional (SC) approach [3] uses
wy=p*o(0.58) and = lyef o(0.56u)" which yields a
symmetrical combination of the gradients on / and 7:

J5C,) =3 (TFC0 ) + T ,) ©)

The Efficient Second-order Minimization (ESM) algorithm
[4] is based on a Lie group parameterization: Ju is

parameterized around du=0 by a Lie algebra vector dvy,.

The link between the two vectors is given by the exponential
map “exp” relationship [7]:

o = exp(0ve) (10)

This approach corresponds to a Symmetric Compositional
Exponential-map approach (SCE) [3] with

g = 1 oexp(0.56v;,) and up = Hyef oexp(-0.56v;,) which
yields the following Jacobian:

oexp(dviie)

JSCE(x‘) — JSC(x})
' ' 65V1ie Oy, =
lie

an
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3. ASYMMETRIC COMPOSITIONAL APPROACH

We now introduce a new approach that unifies and extends
the previous ones. The Asymmetric Compositional approach
(AC) is based on the minimization of E(u;, u7) with

= pko((1-a)du) (12)

-1

Hr = Hyef © (a du) (13)
where a€[0, 1] is a tuning parameter corresponding to an
asymmetric constraint imposed on the bi-directional
parameter vector (i, ir).

The Jacobian matrix is obtained by plugging equation (12)
and (13) into (2) and computing its derivative:

JE () == a)J[C(xp) + a J{(x;) (14

The special case 0=0.5 corresponds to the Jacobian of the
Symmetric Compositional approaches presented before. The
two extreme o values correspond to the (FC) method [6] for
0=0 and the (IC) method [2] for a=1.

Using instead a Lie group parameterization, we can also
define the Asymmetric Compositional Exponential map
(ACE) approach, based on:

1y = 1t o (expl(1 - @) 6v,)) (15)
A7 = Hyef © (exp(_ a 5Vlie )) (16)

which leads to the following Jacobian:

0exp(Viie )

JHE ;) = T4 (x;) 26y
lie

a7)
gvlie =0
The ACE approach is therefore a generalization of the ESM
algorithm [4], which can be obtained for a=0.5. The specials
cases 0=0 and a=1 can be added to the taxonomy, as
Forward Compositional Exponential map (FCE) and Inverse

Compositional Exponential map (ICE).

Table 1 shows a summary of how to integrate the proposed
(AC) and (ACE) methods within the taxonomy scheme of
[3] with its relationship to published works.

Table 1: Synoptic presentation of the proposed approach
compared to existing algorithms.

Generic Jacobian Direct Lie group
category param. Param.
eq. (6) eq. (10)
Forwards JFC = Jgc (FC) (FCE)
(2], [3] [6]
Inverse JI€ = jac I10) (ICE)
[2], [3] [2]
Symmetric Js¢ =Jg¢ (SO) (SCE)
[51. [3] ‘ [3] [4]
o- JAC (AC) (ACE)
Asymmetric




4. EXPERIMENTAL STUDY

To compare the performances of the presented estimation
algorithms, we now use the benchmark proposed by Baker
and Matthews [2].

The experimental results on this benchmark did not
exhibit any significant difference in performance between
Lie group and direct parameterization methods. For the sake
of clarity, we will now therefore provide experimental
results for the Asymmetric Compositional (AC) approach,
with comparisons with the following published approaches:
Forwards Compositional (FC) [6], Inverse Compositional
Reverse (IC) [2] and Symmetric Compositional Exponential
map (SCE) [4].

4.1. Principle of the benchmark

The benchmark generates random disturbances by adding a
spatial Gaussian noise of standard deviation ¢ (called Point
Sigma) to three canonical point locations in the template (cf.
figure 1): these three pairs of points (canonical and test
points) define an affine warp parameter vector u for the

disturbance.

Using these parameters, a reference image (which is
larger than the template) is warped onto image 7 (figure 1.b)
and the image alignment algorithms are run in order to fit
image / to T (figure 1.a). The convergence criteria is the root
mean squared error of the distance between the test point
locations and the destination locations of the canonical
points projected with the estimated deformation (denoted
RMS point error). Additionally, robustness to image noise
can be evaluated by corrupting the template and the image
with additive random Gaussian noise with respective
variances o7 and o;.

Two main performance criteria are considered:

= Average frequency of convergence: percentage of tests
where an algorithm converged to the correct estimate,
(defined as a RMS Point Error less than 1 pixel).

=  Average rates of convergence: for tests that converge
for all methods, the average RMS point error is plotted
against the algorithm iteration number.

4.2. Effect of image noise

In the following experiments, the average frequency of
convergence is plotted with varying spatial Point Sigma. The
image [ is corrupted with random noise of standard deviation
07~25. The parameter of the (AC) algorithm is fixed at
0=0.70. The choice of the a value will be discussed in
further details in next subsection.

From the point of view of the average frequency of
convergence (Fig. 2), the (FC) approach has much worse
results than the (IC) approach, which was already explained
in [2] by the fact that the gradients of image / are corrupted
by noise, yielding a suboptimal performance.
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Fig. 1: Principle of the benchmark [2]

The (SCE) approach has a larger region of convergence
than both of them, by taking advantage of gradient
information from both 7 and 7, as was discussed in [4]. The
new (AC) algorithm has even better results, by taking into
account both images but weighting appropriately the
gradients associated to the noisy image /. The results on the
convergence rate (Fig. 3) lead to an analog analysis: the
(AC) converges faster.
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Fig. 2: Average frequency of convergence with corrupted
image /, with ¢/=25 and 0=0.7.
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Fig. 3: Convergence rate, with corrupted image I, with
0~=25 and 0=0.7 and ¢=8.



4.3. Influence of the o value

Since the Forwards, Inverse and Symmetric approaches can
be considered as special cases of the Asymmetric approach,
we now study the influence of the choice of the a value on
the performances.

The results of figure 4 are obtained in the same
configuration as in figures 2 and 3, but restricting to a fixed
Point Sigma 6=§, and varying the o parameter, from 0 to 1.
For the rate of convergence 6=4 (Fig 4, right), all points on
the same vertical represent the RMS point error for a fixed
a, and for the successive iterations (only the first five
iterations are shown).

The performances of the (FC), (IC) and (SCE)
approaches displayed in figures 2 and 3 can be retrieved in
figure 4 for =0, 1 and 0.5 respectively. The optimal a value
in such a configuration corresponds to a~0.7, which could
not be obtained using previous approaches.

80
= ! o
B 60 \ 5
jo2l ]
§40 : : £
5 P <
R 2 : : =

| | [\'4
0 - 0
0 02 04 06 08 1 0 02 04 06 08 1

alpha alpha
Fig. 4: Left: Average frequency of convergence. Right: Rate
of convergence (first 5 iterations), with noise in image /.

When there is no noise in the images o/=07=0 (see fig 5.
left), the optimal value is a=0.5, which puts in perspective
the results shown in [4] and [5] that when the two images are
identical up to motion compensation, using a Symmetrical
approach yields much improved performance.

When noise is increased in one of the images, the
optimal o value is shifted away (see Fig.6), naturally
weighting down the corrupted gradients. The optimal «
value indeed comes from a tradeoff between the use of both
image gradients and the quality of those gradients. From a
practical point of view, the (IC) approach (a=1) uses only
one Jacobian which can be computed off-line. The use of
both gradients requires additional computations per iteration
which are compensated by a fewer number of iterations
(Fig 3, 4, 5), and a better robustness (Fig 4 left, Fig 6).
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Fig. 5: Convergence rate for the first 5 iterations. Left:
without image noise. Right: with noise in image 7, 0;=25.
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Fig. 6: Average frequency of convergence w.r.t. parameter

a, for increasing amount of noise o; in image / (6;=0).

5. CONCLUSION

In this paper, we have presented a new approach for
parametric image alignment, the Asymmetric Compositional
approach, which has been shown to generalize existing state-
of-the art gradient-based image alignment approaches.
Benchmark experiments have highlighted situations where
the new method outperforms the existing ones, especially
when the template or the image is corrupted by noise. At this
stage, the method requires the parameter o to be defined. Its
adaptive estimation is the subject of future work.
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