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ABSTRACT

To properly benchmark and stimulate current stereo algorithms
specifically in the application context of view interpolation, a robust
quantitative evaluation approach is important. As a prevailing qual-
ity assessment method, interpolation error has been widely used. It
measures the distortions between an interpolated image and a real
camera image for a desired virtual viewpoint. However, is it a robust
quality metric, especially when state-of-the-art stereo technology is
developing so fast? This paper hence focuses on revealing several
rarely attended weaknesses that make the interpolation error eval-
uation paradigm vulnerable. In addition, we propose an alternative
evaluation method as an early attempt at addressing these challenges,
from a perspective of communication system. Evaluation of repre-
sentative stereo methods from the Middlebury website shows that
the new approach yields consistent quality assessment outcomes.

Index Terms— Stereo, view interpolation, interpolation error,
evaluation methodology, communication system

1. INTRODUCTION

Quantitatively evaluating stereo algorithms for view interpolation is
significant for many applications [1, 2]. For instance, in image-based
rendering, researchers are not as directly concerned with error in dis-
parity [3] as they are in the error in color values for the interpolated
image. Hence, an automatic objective evaluation approach for stereo
estimation, oriented toward interpolated image quality assessment, is
necessary. Another example is free viewpoint video and 3D televi-
sion [4]. Such an evaluation enables one to study the effects of vari-
ous depth-image compression methods on rendered virtual views.

Interpolation error [2] was proposed as such a quality metric
for stereo benchmarking. Given a disparity map D estimated from
a stereo image pair {IL, IR}, it first interpolates a user-specified
virtual view image ÎC(D). Then, ÎC(D) is compared against a real
camera image IC captured at the same viewpoint. Without loss of
generality, this paper focuses on the center viewpoint hereinafter.

As a prevailing quality metric that has been widely adopted to
evaluate stereo and motion [1, 2], interpolation error has a few ad-
vantages. First, it more closely matches the requirement of the ul-
timate task (i.e., the quality of the interpolated image), compared
with the disparity-based evaluation [3]. Second, it is a full-reference
based image quality assessment approach [5], yielding quantitative
evaluation outcomes on a well-understood ground. Third, quality
assessment is easy to perform, without involving any sophisticated
computation nor human intervention. However, despite of these ad-
vantages, we observed that it is not always robust to produce sat-
isfactory quality outcomes. As a motivating example, Fig. 1 shows
that an inaccurate disparity map of RealTimeGPU algorithm leads to
a less root mean square (RMS) error than the ground-truth map. This
result violates the common intuition, and it remains hard to explain.
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Fig. 1. An example of quality evaluation results using the (c) interpo-
lation error metric and proposed metric. (a) Ground-truth disparity
map of the Teddy image [6]. (b) The disparity map of RealTimeGPU
algorithm, with a nonoccluded disparity error rate of 7.23% [6]. We
measured the quality of interpolated center images in RMS error.
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Fig. 2. System framework of the interpolation error metric (RC tog-
gled to IC ) and proposed metric for stereo (RC toggled to ÎC(D∗)).

Motivated by this perplexing result discovered in practice, we
attempt at addressing the following questions in this paper. 1) What
has caused the misleading quality assessment outcomes? Or, what
are the weaknesses that have been overlooked in the interpolation er-
ror metric? On what conditions, they are no longer negligible? 2) Is
there any pragmatic alternative to overcome the revealed limitations?
Our exploratory answers to them are given in Sect. 2, 3, and 4.

2. INTERPOLATION ERROR METRIC REVISITED

To have a more structured revisit to the interpolation error (IE) met-
ric, a schematic summary of this method is first shown in Fig. 2. For
a given disparity map D, its IE assessment outcome Q(D) is defined
with three inputs, i.e., a reference image RC , the interpolated image
ÎC(D), and a mask map MC that specifies the regions of evalua-
tion interest. To generate the interpolated image ÎC(D), a baseline
interpolation algorithm [2] is also presented in conjunction with the
IE metric. Next, we discuss these three inputs in more details.
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Fig. 3. The histogram of corresponding pixel errors in (b), mea-
sured between the registered right image in (a) and the left image
IL. Holes are filled in light magenta, not counted in the histogram.

2.1. Weakness of the reference image RC

The IE metric uses the real captured camera image IC as the ref-
erence RC , and this image is assumed to have perfect quality. In
fact, the interpolated image ÎC(D) and the real camera image IC

are formed from essentially different processes. The former is gen-
erated from the input stereo pair {IL, IR} and the estimated dis-
parity map D, however, the real camera image IC originates from
the imaging of the scene under realistic environments. Because of
the nonideal acquisition process, several inherent factors—such as
imaging bias, sensor noise, lens blur, discrete image sampling, sub-
pixel mis-registrations of cameras—make the observed color values
of the corresponding pixels in {IL, IR} different from those ob-
served by IC . This fact was also reported by Zhang and Seitz [7]
and Strecha et al. [8]. Fig. 3(b) shows a histogram of pixel match-
ing errors, measured between the registered right image (to the left
viewpoint) and the left image IL. Consistent with the reported ob-
servation [7], the heavy tail and mixture model fitting in Fig. 3(b)
indicate the violation of brightness constancy even between IL and
IR. As a result, treating IC blindly as a perfect photometric refer-
ence brings nontrivial system bias to an evaluation method [1, 2].

Even worse, such a pre-captured reference at an intermediate
viewpoint is mostly unavailable in 3DTV or free viewpoint video
applications. Seeking a pragmatic approach that still enables ideal
full-reference image quality assessment is clearly desired [4].

2.2. Weakness of the evaluation mask map MC

In the IE metric design, a region mask map MC is also used to
exclude half-occluded pixels from evaluation. It effectively prevents
the ill-posed pixels from contaminating performance evaluation, as
the disparity for these pixels—visible in one input image—can only
be inferred by enforcing some image priors. However, besides the
half-occluded pixels, there are still many mixed pixels near depth
discontinuities, which are marked as nonoccluded pixels in MC .

Fig. 4 gives a geometric explanation of these mixed pixels, e.g.,
p+ ∈ IL, p ∈ IR, and s+ ∈ IC . They are located along depth dis-
continuities, and blend the contributions from both foreground and
background colors. Based on the well-known compositing equation
[9], the correspondence colors for p+ and p are modeled as(

IL(p+) = αFD + (1 − α)BB

IR(p) = αFD + (1 − α)BA ,
(1)

where F and B represent the irradiance of foreground and back-
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Fig. 4. Geometric view of the mixed pixel problem. The projections
and boundary rays of {IL, IR, IC} are in {red, blue, green}. The
depth discontinuity pixel p ∈ IR has a one-to-two mapping, i.e.,
{p−,p+} ∈ IL and {s−, s+} ∈ IC . Similar for the pixel q ∈ IL.

ground scene points, respectively. The 3D scene points involved
are A,B,D, and α is the contribution ratio used to linearly blend
between foreground and background. Given only two stereo images,
solving for unknowns in (1), i.e., α, FD, BB, is an under-constrained
problem [9]. Subject to the surmised values of α and FD, the compo-
sition color ÎC(s+) for the center image, in principle, has an infinite
number of reasonable interpretations. As an example, the locations
of mixed pixels for the Teddy scene are marked in black in Fig. 6(b).
Similar to half-occluded pixels, these ill-posed mixed pixels should
not be included in quality assessment, otherwise it brings another
kind of system bias to the evaluation system. Since the amount of
local intensity variation is usually very large along depth discontinu-
ities, such a system error actually results in pronounced interpolation
errors, making stereo evaluation severely biased and unreliable.

2.3. Weakness of the baseline interpolation algorithm

The IE metric integrates a baseline interpolation algorithm, which
performs a depth-based image interpolation as shown in Fig. 2. For
a given disparity map D, it generates an interpolated image ÎC(D)
by blending a pair of corresponding colors from {IL, IR}. Unfor-
tunately, this baseline algorithm results in notorious color bleeding
[10] along background occlusion boundaries in ÎC(D). Fig. 5 shows
such artifacts, even when the ground-truth depth map D∗ is used.

Again, we rely on Fig. 4 to account for the weakness of the base-
line interpolation algorithm. To generate the pixel s− ∈ ÎC(D), the
baseline algorithm simply averages the colors of the pixel p− ∈ IL

and p ∈ IR. However, it is clear from Fig. 4(a) that the mixed pixel
p is of a contaminated color, while IL(p−) = BA alone gives a
clean and correct background color. The locations of such problem-
atic pixels are marked as red or blue pixels in Fig. 6(b). Without a
prudent handling of color bleeding artifacts, the baseline interpola-
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Fig. 5. Color bleeding artifacts in the interpolated center image due
to the inappropriate baseline interpolation algorithm [2].

tion algorithm brings extra system errors to each individual stereo
method under evaluation, making the IE metric more vulnerable.

In summary, the system bias caused by these three weaknesses
tends to make the IE metric unreliable in benchmarking stereo, when
their impact is comparable with the true performance difference.

3. PROPOSED EVALUATION METHOD

To overcome the weaknesses of the IE metric, we have developed
a new interpolation quality (IQ) evaluation metric, while preserving
the primary advantages of IE discussed in Sect. 1. Correspondingly,
our IQ metric makes the following three major contributions.

Redefinition of the reference image. Unlike the IE metric,
which firmly assumes the real camera image IC is of photomet-
rically perfect quality, our new evaluation philosophy is cast from
a communication system perspective. Regarding image interpola-
tion as a lossy processing channel, we define a pragmatic reference
ÎC(D∗) given by the ideal lossless parameter, i.e., the ground-truth
depth map D∗, as shown in Fig. 2. Following the identical process-
ing channel, for each depth map D or D∗, an interpolated image is
generated, i.e., ÎC(D) or ÎC(D∗). The quality of ÎC(D) is hence
quantified by the fidelity with the lossless reference ÎC(D∗), namely
the distortion caused by such a lossy channel. This new evaluation
paradigm removes the negative impact of photometric deviations in
Fig. 3(b), so the effects of disparity errors on the interpolated image
can be more faithfully measured. Even if a ground-truth depth map
D∗ is sometimes unavailable, the reference ÎC(D∗) can still be ap-
proximated via an accurate depth map estimated from {IL, IR}. In
contrast, the IE metric does not work without a camera image IC .

Redefinition of the evaluation mask map. As discussed in
Sect. 2.2, ill-posed mixed pixels should also be excluded for unbi-
ased interpolation quality assessment, similar to half-occluded pix-
els recorded in the IE mask map MC (see Fig. 6(a)). To this end,
mixed pixels need to be located for the requested center viewpoint,
as exemplified by the pixel s+ and t+ in Fig. 4(b). Based on the
warped ground-truth depth map D∗ and MC , we detect these mixed
pixels as any visible pixels on depth discontinuities from the center
viewpoint. Depth discontinuities are defined as any disparity jump
greater than λ (= 2) pixels [3]. In reality, a neighborhood of pixels
along depth discontinuities are affected, so we consider mixed pixels
as a strip with the width of δ (with δ empirically set to 2 for Teddy).

An improved image interpolation algorithm. As shown in
Fig. 4(b), the color bleeding artifacts (e.g., s−) are located on the
opposite side of occlusion boundaries to the ill-posed mixed pixels
(e.g., s+). Therefore, the detection of color bleeding artifacts can
be easily combined with the mixed pixels detection in a single step.
Fig. 6(b) marks pixels of problematic colors—due to the baseline
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Fig. 6. The proposed evaluation mask map is defined by (a) the
IE mask map MC , plus the ill-posed mixed pixels in black in (b).
Color bleeding artifacts are detected as red (and blue) pixels in (b),
where a single left (or right) correspondence is used to generate (c)
the interpolated image. (d) Close-up view of an artifact-free region.

interpolation algorithm—in red and blue for Teddy. Once these erro-
neous pixels are detected, our improved algorithm corrects them by
filling the clean background colors from a single source image, i.e.,
pixels in red (blue) are filled with the left (right) pixel colors. Thanks
to this simple yet effective scheme, the interpolated image based on
the ground-truth depth map is now artifact free (see Fig. 6(c)).

4. EXPERIMENTAL RESULTS

As the first comparative experiment, Fig. 1 shows quality assessment
results on Teddy based on the IE and IQ metric. Addressing the
weaknesses of the IE metric, the IQ metric yields consistent eval-
uation outcomes for the ground-truth depth map and that of Real-
TimeGPU. We used the same RMS error measure in the IE metric.

Fig. 7 shows another comparison on Venus. It is clear that when
the IE metric is applied, the ground-truth disparity map even results
in non-trivial errors. Among them, the errors inside smooth depth
surfaces (e.g., yellow rectangles in Fig. 7) are mainly caused by in-
appropriate use of the reference image. The errors along depth dis-
continuities are due to improper handling of ill-posed mixed pixels
and color bleeding artifacts (e.g., red rectangles in Fig. 7). All these
system errors together lead to the incorrect ranking of the three al-
gorithms, making the worst algorithm to be ranked as best. The true
defect of the Infection algorithm is not exposed. Compared with the
IE metric, the IQ metric yields far more faithful evaluation results.

To have a more comprehensive understanding of two quality
metrics for stereo, we have randomly selected nine stereo algorithms
from the algorithms submitted to the Middlebury website [6]. These
nine algorithms include the best performing and worst performing
stereo algorithms, i.e., AdaptingBP and Infection as of Sep. 2008,
as well as some representative methods ranked in between. In Ta-
ble 1, we have reported the evaluation results of IE and IQ, along
with the disparity-based metric. Based on the side by side compar-
ison between the IE and IQ evaluation results, one can observe that
these two metrics have significantly different quality assessment out-

979



Table 1. Evaluation of nine stereo algorithms based on the disparity error rate (Disp) for non-occluded areas [6], previous IE metric [2]
measured in RMS error, and our IQ metric in RMS error. The superscript denotes the relative ranking among them. The IE results for
Tsukuba are not applicable, since there is no real camera image available for the given stereo pair, but the proposed IQ metric works well.

Algorithm
Tsukuba Venus Teddy Cones

Disp IQ Disp IE IQ Disp IE IQ Disp IE IQ
AdaptingBP 1.111 1.722 0.101 3.284 0.891 4.221 4.162 2.312 2.481 5.982 3.142

OverSegmBP 1.694 1.924 0.502 3.458 1.242 6.742 4.685 3.034 3.192 6.263 3.303

AdaptWeight 1.383 1.803 0.713 3.367 1.536 7.884 4.583 3.013 3.973 5.931 2.971

GC + occ 1.192 1.661 1.644 3.346 1.373 11.25 4.604 3.195 5.364 6.314 3.854

RealTimeGPU 2.056 2.145 1.926 3.243 1.505 7.233 3.961 2.291 6.415 7.569 4.969

GC 1.945 2.828 1.795 3.152 1.557 16.56 4.867 3.557 7.706 6.525 4.295

SSD + MF 5.238 3.379 3.747 3.305 1.568 16.56 5.319 3.798 10.67 6.956 4.416

SO 5.087 2.807 9.449 4.169 2.989 19.99 5.238 4.009 13.08 6.987 4.868

Infection 7.959 2.706 4.418 3.131 1.373 17.78 4.776 3.326 14.39 7.408 4.837

R M S E  =  3 .20  (2 ) R M SE  =  3 .28  (3 ) R M SE  =  3 .13  (1 )

N onocc. erro r 0 .10%N onocc. erro r 0 .00% N onocc. erro r 4 .41%

R M S E  =  0 .00  (1 ) R M SE  =  0 .89  (2 ) R M SE  =  1 .37  (3 )

Fig. 7. Quality assessment for the interpolated center Venus images
using the disparity map of ground truth, AdaptingBP, and Infection
(from left to right). Top row: Disparity maps and nonoccluded dis-
parity error rates. Middle row: IE-based error maps and RMS errors
(ranks). Bottom row: IQ-based error maps and RMS errors (ranks).

comes when disparity estimation errors are sufficiently small (e.g.,
Venus), while less difference in assessment outcomes when the test
algorithms show a large gap in disparity performance (e.g., Teddy
and Cones). As modern stereo algorithms evolve rapidly, the perfor-
mance gap between different algorithms is steadily narrowed. For
reliable benchmarking, quality metrics with strong performance dis-
criminating power are hence increasingly necessary and desirable.

We also present the disparity-based evaluation results in Table 1.
It is observed that view interpolation oriented quality metrics, ei-
ther IE or IQ, do not necessarily have a high correlation with the
disparity-based evaluation. For example, though RealTimeGPU has
a moderate ranking among the test algorithms, it actually performs
best on Teddy but also worst on Cones in terms of both IE and IQ
assessment. The reason is that the “foreground fattened” depth maps
of RealTimeGPU tend to be “healthy” to the scene of flat surfaces
(e.g., Teddy), but they degrade the accuracy at depth discontinuities
for scenes of subtle geometries, e.g., Cones. This fact pinpoints the
importance of the interpolation-driven quality metrics for stereo.

5. CONCLUSION

In this paper, we have explored the inherent weaknesses of the inter-
polation error metric, which is commonly used for stereo evaluation
in view interpolation applications. The revealed weaknesses suggest
that a prudent design for each component in such a holistic evalu-
ation system is not traditionally practiced. However, as stereo re-
search advances, the systematic errors become increasingly distinct,
making quality assessment outcomes fragile. As a first step towards
addressing this challenge, we have developed a new, pragmatic qual-
ity metric that yields more consistent stereo evaluation results. We
hope more creative exploration can be triggered to make quality as-
sessment more robust and sensible in the future work. Besides that,
we also plan to investigate the perceptual quality aspect.
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