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ABSTRACT
A high level scheme for information fusion to create hierarchical
region-based image representations based on a region merging pro-
cess is presented. The strategy is based on an iterative evolution
where the different merging criteria work independently and cooper-
ate at the partition level to obtain a further consensus that increases
the reliability of the resulting partitions. This cooperative scheme is
applied to the creation of hierarchical region-based representations
of the image based on color and depth information. The proposed
technique is compared with approaches using only one source of in-
formation or linear combinations of both, in datasets with ground
truth as well as estimated disparity information.

Index Terms— Image segmentation, region merging, informa-
tion fusion, median partition

1. INTRODUCTION

Image segmentation is a key step into image analysis. However,
commonly, a unique solution for the image segmentation problem
does not exist. To overcome this situation, a hierarchical segmen-
tation approach can be used where, instead of a single partition, a
hierarchy of partitions may be provided. An important type of hi-
erarchical bottom-up segmentation approaches are region merging
techniques. Starting from an initial partition or from all pixels, re-
gions are iteratively merged until a stopping criterion is reached.

Classical merging criteria are based on color. Nevertheless, in
general, color information is not enough to correctly segment natu-
ral images. For that reason, an increasing attention has been focused
on adding new features to the merging process. Some researchers
have proposed linear combinations of different region features. For
instance, a linear combination of color and contour complexity is
applied in [1] to obtain object-oriented hierarchies of partitions. Ap-
proaches based on a probability or belief framework have been also
proposed [2]. Other segmentation approaches combine color and
depth information, for instance, into a variational framework [3], or
in the context of Markov random fields [4].

Conclusions extracted from the previous approaches agree that a
correct criteria combination improves the segmentation results com-
pared to a single color-based criterion. This improvement comes at
the cost of a parameter estimation or a weight setting stage using a
sufficiently large database.

The motivation of the current work is to propose a high level
scheme for criteria combination on a region merging process. In our
approach the fusion of information does not take place at the cri-
terion level but at the partition level, after applying each criterion
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without being interfered or biased by the other criteria. The sepa-
rated segmentations for each criterion are fused to obtain a common
consensus partition representing the basic agreement between the
different information sources. Using the basic consensus partition
as initial partition for each independent segmentation, the process
is iterated. The consensus partitions obtained at each iteration form
a hierarchy of partitions, that is provided by the cooperation of the
different criteria in their search for a further consensus.

In this work, this cooperative scheme is used to create object-
oriented hierarchical region-based representations, that is, a hierar-
chy of partitions where objects are well represented. We assume
that an object is formed by a single region or by the union of tex-
ture/color homogeneous regions which are placed at similar depth.
For that reason, we create a hierarchy based on the combination of
color and depth information. Particularly, we focus our investigation
on stereo image pairs, where color and depth information correspond
to the RGB image representation and the associated disparity map,
respectively. In this context, we extent the validity of our proposal
considering both cases: ground truth and estimated disparity maps.

The paper is structured as follows. Section 2 introduces some
preliminary definitions and properties related to the mathematical
concept of image partition. Section 3 presents the main components
of the cooperative merging scheme for the fusion of color and depth
information. In Section 4, experimental results using ground truth as
well as estimated disparity maps are presented and compared with
the use of a single criterion (color or depth) or a linear criteria com-
bination. Finally, conclusions are outlined in Section 5.

2. PRELIMINARY DEFINITIONS

Following [5], let π be an image partition, that is, a division of the
image into nonempty disjoint sets (known as regions) which com-
pletely cover the image. Let denote by Π the set of all possible
partitions of an image. The set Π is ordered by the refinement order,
that is, for π, π′ ∈ Π, we can say that π ≤ π′, meaning that regions
in π′ are obtained as the union of regions of π. Then, we say that π
is finer than π′, and that π′ is coarser than π.

A lattice structure is a partially ordered set in which every pair
of elements has a greatest lower bound and a least upper bound. A
lattice structure is associated with the refinement order, with the meet
and the join binary operations defined as follows: the meet (sup)
π ∧ π′ of two partitions π and π′ is their greatest lower bound, that
is the coarsest of all the partitions finer than both π and π′; their join
(inf) π ∨ π′ is their least upper bound, that is the finest of all the
partitions coarser than both π and π′.

If we have a set of partitions, or profile, π = {π1, . . . , πn}, a
median partition of the profile π, denote by μ, is defined as a parti-
tion minimizing the function:
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f(π) =
∑

1≤i≤n

δ(π, πi) (1)

for πi ∈ π, and for δ(π, πi) being the symmetric difference between
the partitions π and πi, defined as the minimum number of pixels
labels that must be changed for π to become identical to πi, or vicev-
ersa. Hence, a median partition of a profile is defined as:

μ = arg min
π

∑

1≤i≤n

δ(π, πi) (2)

Median partitions have some interesting properties [5]. One of
them is the Pareto principle, defined as follows:

Pareto principle. If μ is a median partition of profile π =
{π1, . . . , πn}, then: ∧

1≤i≤n
πi ≤ μ (3)

Thus, the median partition is coarser than the meet of all the
partitions of the profile. This property will be fundamental for the
creation of the cooperative region merging scheme (see Section 3.2).

3. COOPERATIVE REGION MERGING

The cooperative region merging strategy is presented in Figure 1.
It is formed by three main steps: the region merging step, where
the separated segmentation for each criterion is performed; the meet
step, where the final partitions for each criterion are fused at each
iteration; and the scale controller, where the scale consistency of the
partitions is assured and the number of regions is modified to build
the hierarchy.

The central idea is to let the system evolve by itself, starting
with a basic agreement (given by the meet of the partitions) and
searching for partitions with decreasing number of regions by fur-
ther consensus iteration after iteration. This is done instead of find-
ing a coarser direct consensus partition for color and disparity output
partitions (risking to introduce under-segmentation errors). It can be
shown that this iterative scheme provides with a partition hierarchy,
i.e. πk ≤ πk+1 (at each iteration, a partition equal or coarser than
the partition at the previous iteration is obtained).

3.1. Region Merging Step
A region merging step is associated with each criteria or information
source. Starting from an initial partition of the image data (or di-
rectly all pixels at the first iteration, π0), this step performs a region
merging process until it obtains an output partition with the number
of specified regions (see Figure 1).

The region merging techniques used in this work are based on a
modified version of the general region merging techniques based on
information theory statistical measures proposed in [6]. Concretely,
a merging process formed by a Bhattacharyya merging criterion and
a scale-based merging order is chosen for its good compromise be-
tween under- and over-segmentation errors, in the context of both
color homogeneous and texture region segmentation. In addition, it
can be used in a completely unsupervised manner, automatically pro-
viding with an ordered set of the most significant partitions into the
whole hierarchy [6] (this feature will be specially useful in Section
3.3.2).

The region model proposed in [6] was based on the empirical
distribution of the region pixels. The pixel values were quantized
into a reduced number of bins (typically 5 or 10) to improve the per-
formance and reduce oversegmentation. However, the quantization
can increase the undersegmentation error and the emergence of fake
contours. To mitigate these effects, in this work we have used an

Fig. 1: Cooperative region merging scheme.

estimator of the empirical distribution based on an averaged shifted
histogram (ASH). The ASH estimator [7] provides a low-pass fil-
tered version of the normalized histogram, obtained by convolving
the histogram with a triangular window. This modification provides
smoother probability function estimations.

3.2. Meet Step
This step computes the meet operation (defined in Section 2) be-
tween the output partitions provided by the region merging pro-
cesses, i.e. πk

color ∧ πk
depth in the context of Figure 1.

The functionality of this step is based on the Pareto principle,
presented in Equation (3). Given the output partitions of the region
merging processes, their meet provides a finer (i.e. oversegmented)
version of a median partition for the profile formed by the color and
depth output partitions. In other words, it provides a conservative
combination or basic consensus of the output partitions in terms of
merging errors (undersegmentation).

3.3. Scale controler

This block is formed by two steps: the scale-based filtering (Section
3.3.1), that assures the scale consistency of all the obtained parti-
tions; and the scale adapter (Section 3.3.2), that controls the number
of regions in the color and depth partitions to build the hierarchy
taking into account the particularities of the information sources.

3.3.1. Scale-Based Filtering
The meet operation between the color and disparity partitions can
generate small regions formed by few pixels into the resulting parti-
tion. The scale-based filtering removes from the meet partition the
set of regions that are too small to be significant at the current scale,
assuring that all partitions are scale consistent. For that purpose a
scale threshold is defined on the region areas, similarly to the scale-
based merging order used in [6]:

Tscale = α · Image Area

Number of Regions
(4)

The α parameter controls the minimum resolution at each scale. In
our experiments, we have chosen a low value for this parameter, α =
0.03, to be sure that only clearly meaningless regions at that scale are
discarded (in [6], it was typically set to 0.15).

Out-of-scale regions are merged using the same color-based
merging criterion that is applied to compute the color output parti-
tions. The reason for prioritizing color is that, in most cases, these
regions are generated in the contours of the image objects due to
disparity errors or inaccuracies in the estimation, even for so-called
ground truth disparity maps (see Section 4).

3.3.2. Scale adapter

This block controls the number of regions into the color and depth
partitions to build the partition hierarchy. The strategy is based on
two points: first, the ability of the unsupervised region merging tech-
niques in [6] to provide with a set of the most statistically significant
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Fig. 2: From left to right: Aloe and Baby1 datasets (from [8]), Ballet

and Breakdancers (from [9]); including one of the color views (top)

and its corresponding disparity map (bottom).

partitions; second, the assumption, stated in Section 1, that objects
are formed by a single region or by the union of regions at similar
depths. This means that a correct color segmentation must be finer
that a correct depth segmentation and, consequently, that the number
of regions into the color partition must be larger than the number of
regions in the depth partition.

Before starting the cooperative process, a maximum number of
regions for the created color and depth partitions is defined, NMAX

color

and NMAX
depth , respectively. These maximum values are not crucial,

as far as they are large enough to avoid any dramatic errors into
both output partitions (if important errors occur only in one of the
partitions, they are commonly corrected by the meet operation). In
the first iteration, the system is initialized with N0

color = NMAX
color and

N0
depth = NMAX

depth (in general, we use the same value in both cases).

At each iteration, Nk
color and Nk

depth are automatically adapted to
the current problem situation. This is done by analyzing the current
set of color and depth meaningful partitions provided by the region
merging blocks. The number of regions of the largest significant
partition, not exceeding NMAX

color and NMAX
depth , is adopted.

It may happen after some iterations that πk+1 = πk, for
Nk+1

color = Nk
color and Nk+1

depth = Nk
depth. This means that no further

consensus is possible between the color and depth partitions at this
given scale. For that reason, the scale is modified taking into account
that the number of regions in the color partition should be larger than
in the depth partition. Particularly, if the color partition with second
largest number of regions exceeds the number of regions in the cur-
rent depth partition, the color scale is decreased, setting Nk+1

color to the

second largest value and NMAX
color = Nk

color. Otherwise, the depth scale
is decreased, setting Nk+1

depth to the second largest number of regions

in the significant set, and modifying NMAX
depth = Nk

depth.
When the system arrives to the coarsest color and depth signif-

icant partitions, the last part of the hierarchy is created exclusively
based on depth information. The reason is that, at the lowest level
of resolution, depth is more reliable than color to merge regions
that represent image objects. Hence, in this situation, each time
πk+1 = πk occurs, the hierarchy is built by, first, decreasing the
number of regions in the color partition and, when a single region
in color is reached, decreasing the number of regions in the depth
partitions.

4. EXPERIMENTAL RESULTS

4.1. Ground Truth Disparity Maps

The first set of experiments was performed into a subset of the Mid-
dlebury Stereo Datasets [8] (some examples are shown in Figure 2).
The datasets include color images and ground truth disparity maps
obtained by structured light (see references in [8]). The examples
shown in this section were computed on images with a third-size
resolution (413-465×370 pixels). Disparity values are represented

Fig. 3: Middlebury datasets. Comparison between different hierar-

chy creation strategies. See description in Section 4.1.

by intensity values from 0 to 60, corresponding to real disparities
except for the intensity 0 (black areas) that corresponds to unknown
disparity values. Thus, note that though being considered as ground
truth disparity maps, they may include some unknown disparity ar-
eas that, for our purpose, can be considered as estimation errors.

Figure 3 presents a comparison between the hierarchy of par-
titions obtained using different information sources and combina-
tion strategies. Concretely, for the upper dataset (Aloe), partitions
extracted from the hierarchy with 48, 23 and 10 regions (these are
some of the values automatically obtained after the scale controller)
are shown in columns from left to right, respectively. The first row
corresponds to a color-based hierarchy, created using the same re-
gion merging technique introduced in Section 3.1. The second row
presents the hierarchy created by the same region merging technique
but exclusively using disparity information. The hierarchy of parti-
tions into the third row was computed using a weighted combination
of color and disparity information. Heuristically, we found that the
best performance was obtained using equal weights for color and
depth information. Finally, the last row presents the hierarchy ob-
tained by the proposed cooperative approach. In turn, partitions with
54, 14 and 3 regions are shown for Baby1 dataset. In this case, only
hierarchies obtained by the linear (upper row) and the cooperative
combination (bottom row) are compared. In both examples, NMAX

color

and NMAX
depth were initialized to 50 regions.

As commented in Section 1, there is a great improvement into
the segmentation results when not only color or depth information is
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used. Nevertheless, note that partitions from the depth-based hier-
archy with a reduced number of regions provide with good segmen-
tation results from an object-oriented point of view, while partitions
with a larger number of regions have not this property. This fact
confirms the assumption that a partition correctly describing the ob-
jects into the scene has to be finer than a correct depth segmentation,
and that the top part of the hierarchy must be build based on depth
information.

For a large number of regions, the cooperative-based partitions
present, in general, less oversegmentation and more regular and sta-
ble contours compared to weighted-based partitions. This is due to
the iterative process that allows the region merging process to correct
possible merging errors and improve the contour accuracy thanks to
their mutual cooperation through the meet partition. For a smaller
number of regions, some color and depth errors are not present in
the cooperative approach and the color characteristics of the objects
are better preserved than in the direct combination approach. For
instance, in Aloe dataset, part of the background is merged with the
plant in the partition with 10 regions in the weighted-based hierar-
chy. In Baby1 dataset, most of the heterogeneous color regions of
the background have disappeared in the partition with 14 regions,
and part of the background is merged with the foreground in the bot-
tom of the image in the partition with 3 regions.

An extension of these results for other 20 images of the same
dataset can be seen at http://gps-tsc.upc.es/imatge/ Felipe/icassp09/.

4.2. Estimated Disparity Maps
Another set of experiments was performed using a single frame,
and their corresponding estimated disparity maps, from the multi-
ple view sequences Ballet and Breakdancers [9] (shown in the third
and fourth columns of Figure 2, respectively). Images were down-
sampled to a fourth of their full size (256 × 196 pixels). The depth
information was estimated using the stereo technique described in
the references in [9]. As it can be seen in Figure 3, the disparity
maps have a good visual quality although they include some estima-
tion errors and disparity discontinuities.

The first two rows in Figure 4 present the results obtained from
Ballet dataset. From left to right columns, the partitions with 130,
31, and 10 regions, extracted from the weighted-based hierarchy
(first row) and the cooperative-based hierarchy (second row) are
shown. Results in the last two rows of Figure 4 correspond to
Breakdancers dataset. Partitions with 103, 43, and 4 regions from
the weighted-based hierarchy (first row) and the cooperative-based
hierarchy (second row) are shown. In both cases, NMAX

color and NMAX
depth

were initialized to 100 regions.

In the case of partitions with a large number of regions, the
cooperative partitions present slightly more detail and accuracy in
terms of color regions. For instance, the black hair and the feet
of the ballet dancer, and the hand and face of the man, for Ballet
image; and the head and the stretched hand of the dancer in first
plane, for Breakdancers dataset. For partitions with less regions, the
direct criteria combination preserve the most color heterogeneous
regions, while the cooperative-based partitions provide regions that
correspond with main objects and depth planes of the scene (see the
Ballet partitions with 10 regions, and Breakdancers partitions with
4 regions). Note that, also in both datasets, the estimated disparity
for the ground presents a large number of discontinuities and errors.
It is remarkable that this fact generates a large number of overseg-
mented regions into the weighted-based partitions, while the coop-
erative partitions present a better segmentation of the ground despite
the estimation errors (see partitions with 31 and 43 regions for Ballet
and Breakdancers, respectively).

Fig. 4: Ballet and Breakdancers datasets. Comparison between dif-

ferent hierarchy creation strategies. See description in Section 4.2.

5. CONCLUSIONS

The cooperative region merging scheme, applied to combining color
and depth information, provides in general more stable (contour reg-
ularity), accurate (richer color description) and semantic (better ob-
ject representation) hierarchical region-based image representations
than a direct criteria combination, and without requiring any pa-
rameter adjustment, model estimation, or training stage. Although
the computational load of the direct combination approach may be
lower, the cooperative structure can be easily parallelized (for in-
stance, each region merging block can be independently run in a
different CPU). In this case, the increase in the number of region
fusions computed by each block is bounded in the worst case (the
number of regions at each iteration decreases only by one) by the
square of the number of regions at the first iteration. Considering
that the first meet partition has 150 regions (a typical value for N0

color

and N0
depth set to 50 regions), the increase in the number of mergings

is bound in the worst case to 9%, 2.25%, and 0.56% for images with
500×500, 1000×1000, and 2000×2000 pixels, respectively.
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