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ABSTRACT

We present a simple and lightweight approach to scene anal-
ysis in the H.264/SVC domain. The method is entirely based
on the motion vectors found in the compressed stream. Mo-
tion segmentation and object detection is performed after the
estimation of the camera motion. Important object properties
are calculated, which are used for object matching and trajec-
tory estimation. The relative distance to the camera is esti-
mated, resulting in a pseudo 3-D representation of the object
trajectories.

Index Terms— H.264/SVC, compressed domain, scene
analysis, trajectory estimation

1. INTRODUCTION

In scene analysis, global camera motion and local object mo-
tion are important features. Multiple applications, like video
surveillance or video summaries, can profit from automati-
cally obtained local and global motion information.
The main focus of this article is the trajectory estimation

of moving objects in a video scene. We are working on scal-
able, compressed video streams encoded by H.264/SVC, the
scalable extension of H.264/AVC. The coded stream already
contains block-based motion vectors (MVs) for the variable
sized macro-blocks (MBs) inherent to SVC, so the expensive
estimation process was already performed by the encoder.
However, the resulting motion vector field is sparse and noisy,
so pre-processing has to applied.
Since we work with scenes that have been shot by a single

uncalibrated camera, we first estimate the objects’ trajectories
in the image plane seen by the camera. Combining some ex-
tracted object properties, we finally estimate the relative dis-
tance to the camera over time, resulting in pseudo 3-D repre-
sentation of local object motion during a video scene.
We assume that we have separated video scenes without

any cuts or transitions. This can be achieved by first applying
a compressed domain shot boundary detector, one of which
was proposed by Bruyne [1] specifically for H.264 streams.

This work has been carried out in the context of the french national
project ICOS-HD (ANR-06-MDCA-010-03) funded by the ANR (Agence
Nationale de la Recherche).

2. RELATED WORK

A large number of compressed domain object segmentation
and tracking algorithms appeared over the years. The pro-
posed tracking approaches in the compressed domain rely ei-
ther on MVs, residual information, or both. A lot of these
works exploit the information found in MPEG-1/2 streams,
where MVs and DCT coefficients are easily accessible. Hes-
seler et al. [2] perform the tracking initialization on decoded
I-frames and use histograms of MVs of theMPEG-2 stream to
perform tracking. Other MPEG-2 based methods have been
proposed in [3, 4, 5, 6, 7, 8, 9].
Though most of the mentioned work can generally be

ported to the H.264-AVC/SVC domain, some basic assump-
tions are no longer valid. The often used AC and DC coeffi-
cients (e.g., [3, 7, 8, 9]) of intra-coded blocks in H.264/AVC
are transformed from spatially intra-predicted values instead
of the original pixel values, so full decoding is necessary.
Concerning our goal of unsupervised, compressed domain
scene analysis, other shortcomings of former approaches in-
clude manual tracking initialization (e.g., [6, 9]), no support
for camera motion (e.g., [9]) and no support for multiple, oc-
cluding objects (e.g., [4]). None of the approaches addresses
the estimation of the object distance to the camera.

3. OBJECT DETECTION

The extraction of moving objects is based on the estima-
tion of the global camera motion. We apply a robust algo-
rithm similar to the one presented in [8], which estimates
the well-known 6-parameter affine motion model using the
MVs present in the stream. The algorithm follows an iterative
weighted least squares scheme with outlier rejection after
each iteration. For H.264/SVC, the entropy coding has to be
reversed as the only necessary decoding step. The displace-
ment values dx and dy are stored in quarter-pel precision for
each MB and sub-MB partition.
The result of the global motion estimation (GME) is the

vector φ, which contains the six parameters a1..a6 of the as-
sumed motion model. During the GME, outlier masks in sub-
MB resolution are created from vectors that do not follow the
global motion. Outliers mainly originate frommoving objects
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and also from low-textured areas, where the block-matching
algorithm of MPEG-based video codecs delivers very noisy
results that do not reflect the real motion.
In order to alleviate the impact of these miss-detections,

spatio-temporal filtering along the MV trajectories is per-
formed. We apply morphological filtering, followed by a
median and low-pass filter over a temporal window of 8
frames, which corresponds to one GOP in our test videos.
The resulting outlier masks give a rough segmentation of the
scene in static background and moving foreground objects.
We now construct a Motion History Image (MHI) [10]

from the resulting masks to enhance the representation of
small and poorly detected objects. After each update step, the
MHI is segmented into its connected regions. For the time
being, each separate region in the MHI is considered as a
single moving object, if it is larger than a threshold size. As
a final step of the detection stage, we assign a label to each
object and calculate and memorize certain properties, namely
the

• mask and its size in sub-MBs,
• the centroid and
• the local object motion.

The local object motion is estimated similar to the global
motion, except that only the MVs covered by the mask are
considered as active estimation support. Figure 1d-e gives an
example for a raw and a filtered mask.

(a) (b) (c)

(d) (e) (f)

Fig. 1. a-c) Screenshots d) Raw outliers e) Filtered mask with
detected object f) OHI of man. Sequence ”street” c©Warner
Bros. Adv. Media Services Inc.

Table 1 shows the results of the object detection stage for
multiple test sequences. The method performs well for vari-
ous kinds of sequences.

4. OBJECT MATCHING

The frame-to-frame object correspondence is solved by a sim-
ple matching process which takes the object position and its
properties over time into account. The first detection of mov-

Table 1. Object Detection Results
Sequence Dur. in Corr. det. Missed False

frames (sec) objects objects pos.

street 270 (10.8s) 268/270 (99%) 2/270 22
parkrun 100 (4.0s) 95/100 (95%) 5/100 3
surveillance 118 (4.7s) 224/236 (95%) 12/236 3
kung fu 180 (7.2s) 291/303 (96%) 14/303 0
hall monitor 300 (12.0s) 404/455 (89%) 51/455 0
restaurant 310 (12.4s) 288/310 (93%) 22/310 7
train 228 (9.1s) 223/228 (97%) 5/228 2

ing objects in image I0 initializes the object matcher. All ob-
ject properties are calculated and the local motion estimation
is used to predict the position in the successive frame. The
label of the closest match in the successive frame is assigned
to the new object.
Merge situations are detected if the predicted positions of

multiple objects coincide in one single object in the follow-
ing frame. Similarly, split situations are resolved when two
objects emerge out of one. In case multiple separate objects
get initialized as one merged object due to overlapping sil-
houettes, we know only after a split that it actually contained
multiple objects. Therefore, we update the object labels of the
past merged object.
Besides, a set of simple and general rules are applied to

cope with common types of miss-detections and problematic
cases. For example, a small separate object that is covered
by the projected mask from the previous image is marked as
a ”child” object under the same label than the main object.
Partially occluded object parts (due to tables, lampposts, etc.)
often fall under this category.

5. TRAJECTORY CONSTRUCTION

At this stage, we have a series of labeled objects together
with their properties for each video frame. Since the appear-
ance of a moving object usually changes over time due to the
changing perspective, the position of the mask centroid may
be subject to severe jitter. This is true most notably for non-
rigid objects like human beings. We construct so-called Ob-
ject History Images (OHIs) to stabilize the trajectory control
point, one per object. The initial OHI is represented by the
firstly detected object mask at t0. If the object matcher finds
a corresponding object at t0 + 1, we increment the values in
the OHI where the projected mask from t0 overlaps with the
current mask. An exemplary OHI for the street sequence is
shown in Fig. 1f. As the trajectory control point, we calculate
the center of gravity of the OHI, which assigns more impor-
tance to high values in the OHI, corresponding to the most
stable parts of the object.
At this point, we can draw the trajectories over time in

the image plane as seen by the camera. The complete, global
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motion compensated trajectory for the man in the street se-
quence is shown in Fig. 2a. Figure 2b shows the ground truth,
obtained by a user who was demanded to click on the middle
of the mans’ waistline in each frame. The rectangles repre-
sent the viewport of the camera over time. One rectangle per
second is drawn. The curves connecting the rectangle corners
represent the estimated global camera translation over time.
It can be observed that the camera is following the moving
object. It has to be noticed that the ”third” dimension in this
representation is time and not space. The estimated trajectory
deviates only slightly from the ground truth. The short lines
in the top left corner of image 2a were caused by the moving
branch of a tree.

(a) (b)

Fig. 2. a) Estimated trajectory b) Manually obtained trajec-
tory. Sequence ”street”.

6. RELATIVE DEPTH ESTIMATION

Since we work with a single, uncalibrated camera and com-
pressed domain information, the distance of the moving ob-
ject to the camera can only be observed indirectly through its
position and size. Furthermore, no absolute distance values
can be obtained due to the lack of scene geometry knowl-
edge and camera parameters. We aim at estimating a relative
distance measure that reflects if an object is approaching or
moving away from the camera. We consider the following
object properties as distance indicators:

• visible object area (mask size a(t)),
• total mask height (h(t)),
• top and bottom point of mask (topY (t), botY (t)).

We assume that the relation between the visible object sur-
face and its relative distance drel(t) is of quadratic nature,
which in theory is only true for observed objects that do not
change their appearance/silhouette over time. Due to occlu-
sions, noise, perspective distortions and non-rigid objects,
this assumption is violated in nearly all real world scenar-
ios. Nevertheless, the application of a very strong temporal
moving average filter (window > 2 sec.) levels out most of
the mentioned effects and leads to a more confident measure
af(t) of the object area. It relates to the distance as af ∼ d2

rel.
We also filter the object height and assume the linear relation
hf(t) ∼ drel. The third indicator we take into account is

the top and/or bottom Y-coordinate of the object over time,
assuming the object moves on a flat surface and the camera
angle to this surface is less than 90◦. Preferably, botY (t) is
used instead of topY (t) because of the direct connection to
the ground, but we switch to topY (t) if the objects’ lowest
point is outside the viewable image, detected by the mask
touching the lower image border. We interpret positive ΔY

values as approaching and negative values as distancing.
The three indicator vectors are finally stacked in the ma-

trix I = [af (t)T hf (t)T posYf (t)T ], which is multiplied by
the weight vector w = [w0w1w3]

T , where wi = 1

3
in or-

der to account similar relevance to all three indices. The final
distance estimation result is then obtained by drel(t) = I ·w.
Figure 3 shows the filtered indices that are used for the

distance estimation over time and the final result for the street
sequence. All indices have been normalized and the resulting
measure is relative, where the chosen scale factor 100 is arbi-
trary and has no physical meaning. The man in the sequence
steps down the sidewalk, so the flat surface assumption is not
respected, leading to the deviation of the topY index. In ad-
dition, the object is not entirely visible all the time. Never-
theless, the relative distance is well approximated (see also
Sec. 7).
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Fig. 3. Normalized distance indices and final, relative dis-
tance estimation result. Sequence ”street”.

Camera zoom is detected by the global motion estimator.
In moments of zooming, all indicators have to be compen-
sated. Though this is possible, we only tested our method on
videos with pure translational camera motion or fix cameras.

7. FINAL RESULTS

Figure 4 shows the pseudo 3-D trajectory of the man in the
street sequence (for screenshots see Fig. 1). The relative
movement away from the camera and around the shrub is
well detected. The motion of the model railroad in sequence
train is depicted in Fig. 5. Though the estimation result is not
perfect, it gives a good idea of the real setup. Screenshots and
the trajectory for the waiter in the sequence restaurant are
given in Fig. 5. This trajectory also reflects the waiters’ real
path, except for a moment where he stops to clean a table.
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With only his arm in motion, a sharp movement away from
the camera and back is estimated.

Fig. 4. Trajectory with relative object distance (depth) to the
camera. Colors: blue =̂ t0, red =̂ tend. Sequence ”street”.

Fig. 5. Screenshots and trajectory. Sequence ”train”.

The processing time for all tested sequences at a resolu-
tion of 480x272 was near real-time to real-time (23-26.5 fps)
on an Intel 2.16 GHz Core2Duo with 1 GB RAM.

8. CONCLUSIONS

We presented an efficient method to analyze scene motion
in the compressed domain that can cope with camera mo-
tion. Two still-image representations are proposed to sum-
marize the local and/or global motion within scene. The sim-
ple architecture delivers very promising results and enables
fast processing. Future directions include the classification in
rigid/non-rigid objects.
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