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ABSTRACT

By comparing two images, which are captured with the same
scene at different times, we can detect the image changes due
to moving objects. To reduce the influence from the different
intensity properties of the images, an intensity compensation
scheme, which is based on the polynomial regression model,
is employed. For an accurate detection of outliers alleviating
the influence from a set of outliers, a simple technique that re-
runs the regression is employed. In this paper, the algorithm
that iteratively reruns the regression is theoretically analyzed
by observing the convergency of the estimates of the noise
variance. Using an empirical compensation constant for the
estimate is also proposed. The compensation enables the de-
tection algorithm robust to the choice of thresholds for select-
ing outliers.

Index Terms— Doubly truncated samples, outlier, re-
gression.

1. INTRODUCTION

Suppose that two images contain the same scene, but are cap-
tured at different times and thus have non-corresponding ob-
jects. We call the objects the sets of outliers or the outlier
objects. Such outlier objects are usually caused by different
illumination conditions, the intensity saturation, specularity,
shadows, or occlusions from moving objects of pedestrians,
vehicles, or cloud. We can detect the outlier objects or the
image changes by comparing the images. The surveillance
system, which detects trespass, is an application of such tech-
niques finding outlier objects. We can also detect a car on the
road and find its license plate.
In this paper, the outlier objects are detected in the context

of the outliers, which is widely used in the area of statistics
[1], by formulating the polynomial regression model for the
intensity compensation without prior knowledge of the cam-
era parameters. Using the obtained regression function, we
can compensate the intensity difference between images and
reduce the influence from the intensity difference. Rerunning
the regression [1, p. 162] after excluding the possible outliers
that are selected in the previous stage can efficiently detect
possible outliers at a low cost. However, it is difficult to de-
scribe the relationship between the detected outliers and the

real outlier objects. Furthermore, the appropriate number of
times for rerunning the regression is not known. In this paper,
the rerunning approach is analyzed based on the notion of
estimating the noise variance from the doubly truncated sam-
ples. We theoretically observe the convergence property of
the estimate for the noise variance. The robust algorithm de-
veloped in this paper has the notion that the performance is in-
sensitive to the selection of the thresholds. The proposed de-
tection algorithm uses two thresholds, and is numerically an-
alyzed by observing the robustness with respect to the thresh-
olds. Note that the selection of the thresholds is not critical in
the performance of the proposed algorithm.
This paper is organized in the following way. In Section 2,

the outlier image model is formulated based on the polyno-
mial regression for the intensity compensation. In Section 3,
the approach that iteratively reruns the regression is theoreti-
cally analyzed by observing the convergency of the estimated
noise variance. In Section 4, the robust performance of the
detection algorithm is demonstrated for real images, and the
paper is concluded in the last section.

2. OUTLIER IMAGE MODEL BASED ON THE
POLYNOMIAL REGRESSION

In this section, an intensity compensation is performed based
on the polynomial regression model to alleviate the intensity
influence on detecting outlier objects.
Let ui and vi, for i = 1, . . . ,m, denote the pixel values

inR for the reference and input images, respectively. For the
intensity compensation consider a polynomial η given by

η(v; q) := q0 + q1v + · · ·+ qbv
b

for pixel values v ∈ R, where q is a coefficient vector defined
by q := (q0, q1, . . . , qb) ∈ Rb+1 with b+1 coefficients inR.
The polynomial regression model [1, p. 181] for the intensity
compensation of input vi with respect to the reference image
ui is now given by ui = η(vi; q∗) + εi, for i = 1, . . . ,m,
where q∗ ∈ Rb+1 is a coefficient vector. Here, we suppose
that εi are independent, and identically distributed random
variables with mean zero and variance σ2, where σ is a non-
negative constant. We call σ2 the noise variance. By mini-
mizing the sum of squares

∑m
i=1 [ui − η(vi; q)]2 with respect
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to q, we obtain a least square estimate qo of q∗ [1, (2.9)].
Hence, a compensated image is given by η(vi; qo). Note that
η(v; qo) should be a monotonically increasing function of v
in order to prevent the inversion of the intensity in the com-
pensated images [2].
We now consider an additive outlier image model for a

mathematical observation on the influence of outliers [2]. Let
ri ∈ R denote the outlier image to be added. The outlier
image model is then given by

ūi = η(vi; q∗) + ri + εi, for i = 1, . . . ,m.

Let Λ denote the index set as Λ := {1, . . . ,m}, and let Ω∗ ⊂
Λ denote the index set of the outlier objects, of which size
is n (< m). For a simple outlier image model, we suppose
that ri = r if the ith pixel is an outlier, i.e., i ∈ Ω∗, and
ri = 0 otherwise, where constant r is the pixel value of the
outlier objects. Here, we call r/σ the object to noise ratio.
We test the robustness of the detection algorithm by changing
the ratio.

3. RERUNNING THE REGRESSION

To find outliers in the regression analysis, a measure is used
to detect possible outliers, which will be examined for the fi-
nal outliers [1, ch. 8]. The measure is defined as the residual
[ūi−η(vi; q∗)], which implies the distance of the observation
from its predicted value. To make the measure insensitive to
the noise variance σ2, we consider a scaled residual ρi, which
is defined by ρi := [ūi − η(vi; q∗)]/σ. For a positive con-
stant T as a threshold, we presume that the pixels satisfying
|ρi| > T are possible outliers for detecting the outlier objects.
In other words, if the magnitude of the image difference is
greater than Tσ, then the corresponding pixel is treated as a
possible outlier. Rosin [3] proposed using T = 3 for the uni-
modal case.

3.1. Iterative Regression Analysis

In order to calculate the residual ρi for detecting possible out-
liers, we should obtain estimates of q∗ and σ2 using the sam-
ples (ūi, vi) when ui are not practically available. Hence, it
is necessary to develop techniques that examine the influence
of the outlier objects. A simple method is rerunning the re-
gression after excluding the possible outliers that are selected
in the previous stage [1],[4].
We now analyze the approach that is based on rerunning

the regression by observing the estimates of the noise vari-
ance. Letting Ω ⊂ Λ denote an index set of possible outliers,
an estimate of q∗ is defined by

qo(Ω) := arg min
q

∑
�∈Λ\Ω

[ū� − η(v�; q)]2 .

We can also apply a constrained monotone regression in ob-
taining qo(Ω) [2]. For an estimation of the noise variance σ2

similarly to [5], let us consider an estimate s2(Ω), which is
defined by

s2(Ω) := min
q

1
m(Ω)

∑
�∈Λ\Ω

[ū� − η(v�; q)]2

if m(Ω) �= 0, and s2(Ω) := 0 otherwise, where m(Ω) is
the size of Λ \ Ω. Let a positive constant μ denote the com-
pensation constant for the estimate s2(Ω) to compensate the
possible bias from the estimate. The compensated estimate is
then denoted by [μs(Ω)]2. We now introduce the algorithm
that iteratively applies the regression analysis as follows:

Iterative Regression Algorithm
0) Set positive constants D, ε, and μ. Letting k = 0, choose
the initial set as Ω(0)

D = ∅.
1) Calculate the residuals

ρ
(k+1)
i :=

[
ūi − η

(
vi; qo

(
Ω(k)

D

))]

μs
(
Ω(k)

D

)

for i = 1, . . . ,m, and update the set from

Ω(k+1)
D :=

{
i ∈ Λ :

∣∣∣ρ(k+1)
i

∣∣∣ > D
}

. (1)

2) If
∣∣∣s2

(
Ω(k+1)

D

)
− s2

(
Ω(k)

D

)∣∣∣ < ε, then stop. Otherwise,
k ← k + 1 and goto Step 1).

3.2. Convergence of the Iterative Regression Algorithm

We now observe the convergence of the iterative regression
algorithm by observing the estimate of the noise variance. For
a positive constant D, let B(k) ∈ R denote the kth threshold
defined as B(k) := Dμs

(
Ω(k)

D

)
, for k = 0, 1, . . .. The (k +

1)th set Ω(k+1)
D of (1) can then be rewritten by

Ω(k+1)
D =

{
i ∈ Λ :

∣∣∣ρ̄(k+1)
i

∣∣∣ > B(k)
}

for k = 0, 1, . . ., where the residuals ρ̄
(k+1)
i are defined by

ρ̄
(k+1)
i :=

[
ūi − η

(
vi; qo

(
Ω(k)

D

))]
.

For the k = 0 case, we have the following relationship:

s2
(
Ω(0)

D

)

≥ 1

m
(
Ω(1)

D

) ∑
�∈Λ\Ω(1)

D

[
ū� − η

(
v�; qo

(
Ω(0)

D

))]2

≥ s2
(
Ω(1)

D

)
.

Let Γ(k+1)
D :=

{
i ∈ Λ :

∣∣∣ρ̄(k+2)
i

∣∣∣ > B(k)
}

, for k =

0, 1, . . .. If s2
(
Ω(k+1)

D

)
≤ s2

(
Ω(k)

D

)
holds for k = 0, 1, . . .,
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then, from the definition of B(k), B(k+1) ≤ B(k) holds, and
consequently Ω(k+2)

D ⊃ Γ(k+1)
D holds. Hence, we have the

following relationship:

1

m
(
Γ(k+1)

D

) ∑
�∈Λ\Γ(k+1)

D

[
ū� − η

(
v�; qo

(
Ω(k+1)

D

))]2

≥ 1

m
(
Ω(k+2)

D

) ∑
�∈Λ\Ω(k+2)

D

[
ū� − η

(
v�; qo

(
Ω(k+1)

D

))]2

≥ s2
(
Ω(k+2)

D

)
. (2)

We also have the following relationship:

s2
(
Ω(k+1)

D

)

≥ 1

m
(
Γ(k+1)

D

) ∑
�∈Λ\Γ(k+1)

D

[
ū� − η

(
v�; qo

(
Ω(k+1)

D

))]2

.

(3)

Therefore, from (2) and (3), we have
[
μs

(
Ω(k)

D

)]2

≥
[
μs

(
Ω(k+1)

D

)]2

, for k = 0, 1, · · ·

which implies that the compensated noise variance monoton-
ically decreases and converges to a limit as k → ∞ since
[μs(Ω)]2 ≥ 0. The limit of the estimate, however, is not
known. In fact, for the case of small thresholds, e.g.,D < 2.0,
when μ = 1, we numerically have s2

(
Ω(k)

D

)
→ 0 in general.

In other words, almost all pixels are selected as the possible
outliers, which is meaningless. Even though we have other
limits, we cannot guess whether the estimate is close enough
or not to the real noise variance σ2.

3.3. Compensated Estimate Using Doubly Truncated
Samples

By using a part of the observation, we can estimate the
real noise variance under special cases, such as r = 0.
Kim and Lee [2] proposed using a constant, which is cal-
culated with a normal distribution function. Here, we gen-
eralize the constant for a given distribution function F . We
consider a doubly truncated variance, which is defined by
P−1

D

∫ D

−D
z2dF (z), where F is a distribution function with

mean zero, and PD :=
∫ D

−D
dF . Here, we assume that

PD �= 0. We now define a further general constant λD for a
given D as follows:

λD :=
P−1

D

∫ D

−D
z2dF (z)∫

z2dF (z)

which satisfies λD < 1, and depends on the shape of F . Sup-
posing that the distribution function of the noise εi is equal to
F , let a set ΩD be defined as ΩD := {i ∈ Λ : |εi/σ| > D}.

The estimate of the noise variance based on the doubly trun-
cated samples in ΩD satisfies [2, Appendix]

E{s2(ΩD)} ≤ [1− (1− PD)m] σ2λD. (4)

Here, σ2 =
∫

z2dF (z). Since λD < 1 and [1− (1− PD)m] <
1, we have E{s2(ΩD)} < σ2. Hence, the estimate s2(ΩD) is
a biased estimate of the real noise variance σ2.
For a given D, let us use λD to choose the compensation

constant as μ = λ
−1/2
D . Let Ω(∞)

D denote a limit of (4) as
k → ∞. If the resultant vector is equal to the real one, i.e.,
qo

(
Ω(∞)

D

)
= q∗, and Ω(∞)

D = ΩD, then the compensated
estimate satisfies

s2
(
Ω(∞)

D

)
λD

=
1

λD ·m
(
Ω(∞)

D

) ∑
�∈Λ\Ω(∞)

D

ε2
� (5)

for r = 0. From (4), the expectation of (5) is approximately
σ2 for large m. Hence, the compensated estimate by using
λD could be a necessary condition for finding an unbiased
estimate when r = 0. Note that the estimate is independent of
the thresholdD, which is of importance in designing a robust
detection algorithm since the performance is not sensitive to
the selection of the threshold D. Furthermore, estimating the
real noise variance is also important for the unimodal case [3].

3.4. Empirical Compensation Constant

In practical images for the detection of the outlier objects, ac-
quiring the distribution function F of the noise is not easy.
Hence, we propose using an empirical compensation con-
stant, which is calculated from the observation (ūi, vi). Let a
possible outlier set Ω̂D be defined by

Ω̂D :=
{

i ∈ Λ :
∣∣∣∣ ūi − η(vi; qo)

s(∅)
∣∣∣∣ > D

}

where qo is an unbiased estimate of q∗ defined by qo :=
qo(∅). The empirical compensation constant is then given
by μ = λ̂

−1/2
D , where λ̂D is an empirical constant defined by

λ̂D :=

[
m(Ω̂D)

]−1 ∑
�∈Λ\Ω̂D

[ū� − η(v�; qo)]2

s(∅) .

4. OUTLIER OBJECT DETECTION

Using the estimates qo(Ω(∞)
D ) and s2(Ω(∞)

D )/λ̂D, which are
obtained by the iterative regression algorithm with the com-
pensated estimate for a fixed D, we calculate the modified
residuals:

ρ
(∞)
i :=

[
ūi − η

(
vi; qo

(
Ω(∞)

D

))]

λ̂
−1/2
D s

(
Ω(∞)

D

)
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for i = 1, . . . ,m. We then detect the final possible outliers
by comparing the residuals with a fixed threshold T (> 0),
which can be different from D. In other words, the samples
that satisfy |ρ(∞)

i | > T are regarded as the possible outliers.
Note that D is used for obtaining an estimate of the noise
variance and T is used for detecting possible outliers. In order
to remove possible outliers that form small objects or holes in
an object, we apply the morphological filtering technique [6,
ch.9] to the final possible outliers using a square structuring
element.

(a) (b)

Fig. 1. Images for numerical experiments. (a) Reference im-
age with the outlier object (bus). (b) Input image (Image A).

In order to evaluate the performance of the iterative re-
gression algorithm, which is based on the empirical com-
pensation constant λ̂D, we use real images as in Fig. 1.
Fig. 1(a) is a reference image having an outlier object (bus)
and Fig. 1(b) is an input image. By using the empirical
compensation constant we can obtain a stable estimate for
the noise variance, which is insensitive to the choice of the
threshold D. The detected results are shown in Figs. 2 and 3
forD = 2.5 and 4.0. Here, we use two images, Images A ((a)
and (c)) and B ((b) and (d)), of which intensity conditions are
different, and the opening and closing operation having the
structuring element size of 5 × 5. In Fig. 2, the compensa-
tion constants λD are calculated from the normal distribution
function. We can notice from Fig. 2 that the shapes of the
detected outlier objects are slightly different depending on the
values of thresholds D as well as the input images. However,
for the case of the empirical compensation constant λ̂D as
in Fig. 3, the detected shapes are uniform. Hence, we can
conduct a robust detection of outlier objects independently of
the noise variances of input images.

5. CONCLUSION

The polynomial regression model and residuals are used to
detect outlier objects. Rerunning the regression can success-
fully detect the outlier objects at low cost. In this paper, an
algorithm that iteratively reruns the regression is theoretically
analyzed by observing the convergence property of the esti-
mates of the noise variance. Using an empirical compensa-
tion constant for the threshold is proposed to devise a robust
detection algorithm to the choice of thresholds for selecting
outliers.

(a) (b)

(c) (d)

Fig. 2. Input images with detected outlier object based on
λD that is calculated with the normal distribution (T = 3.3).
(a),(b) D = 2.5. (c),(d) D = 4.0.

(a) (b)

(c) (d)

Fig. 3. Input images with detected outlier object based on
the empirical compensation constant λ̂D (T = 1.5). (a),(b)
D = 2.5. (c),(d) D = 4.0.
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