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ABSTRACT
This paper proposes a novel flow estimation method with
a particle filter based on a Helmholtz decomposition theo-
rem. The proposed method extends a model of the Helmholtz
decomposition theorem and enables the decomposition of
flows into rotational, divergent, and translational compo-
nents. From the extended model, the proposed method de-
fines a state transition model and an observation model of
the particle filter. Furthermore, the proposed method derives
an observation density of the particle filter from an energy
function based on the Helmholtz decomposition theorem.
By utilizing these novel approaches, the proposed method
provides a solution to the problem in the traditional ones of
not being able to realize an effective flow estimation with the
particle filter based on rotation, divergence, and translation,
which are important geometric features. Consequently, the
proposed method can accurately estimate the flows.
Index Terms— Helmholtz decomposition theorem, Par-

ticle filter, Gradient-based method, Flow estimation, Fluid
flow.

1. INTRODUCTION

Recently, extensive studies have been carried out on flow es-
timation because it can be applied to many fields, such as me-
teorology, oceanography, medicine, etc. Traditionally, many
methods to estimate flows from image sequences have been
proposed. A gradient-based method [1] is representative of
them and improved by [2, 3].
In [2], current flows are estimated by utilizing the previ-

ous ones based on relationship between the flows and a dis-
turbance field [4]. However, since the traditional method [2]
does not consider estimation errors included in the previous
flows, its performance tends to become degraded in the fol-
lowing frames. By introducing a particle filter [3] into the
gradient-based method [1], the flow estimation considering
the estimation errors included in the previous flows can be
achieved. However, it is difficult for a state transition model,
an observation model, and an observation density with [1] to
realize the flow estimation based on rotation, divergence, and
translation, which are important geometric features express-
ing basic motions of objects. Thus, the particle filter with [1]
is not accurate.
This paper proposes a novel flow estimation method with

the particle filter based on a Helmholtz decomposition the-
orem [5]. The proposed method extends a model of the
Helmholtz decomposition theorem, which can decompose
the flows into rotational and divergent components, in such
a way that it can express translational ones. The extended
model is utilized for defining the state transition model and

the observationmodel of the particle filter. Furthermore, from
an energy function utilized in [5], we derive the observation
density of the particle filter. By utilizing these approaches,
the proposed method provides a solution to the problem in
the traditional ones of not being able to realize an effective
flow estimation with the particle filter based on the rotation,
the divergence, and the translation, which are the impor-
tant geometric features. Consequently, the proposed method
achieves subjective and quantitative improvement of the flow
estimation over the traditional ones.
This paper is organized as follows. In Section 2, we

extend the model of the Helmholtz decomposition theorem.
Section 3 presents the proposed flow estimation method
with the particle filter based on the extended model of the
Helmholtz decomposition theorem. Section 4 shows some
simulation results to confirm the high performance of the
proposed method.

2. EXTENDED MODEL OF THE HELMHOLTZ
DECOMPOSITION THEOREM

In this section, we extend the model of the Helmholtz decom-
position theorem and enable the decomposition of the flows
into the rotational, divergent, and translational components.
The traditional method [5] utilizes the following model of the
Helmholtz decomposition theorem:

w = wrot + wdiv. (1)
This equation means that the floww can be decomposed into
the rotational componentwrot (wrot = (wrot

x , wrot
y )) and the

divergent one wdiv (wdiv = (wdiv
x , wdiv

y )). These compo-
nents satisfy the following equations:

divwrot =
∂wrot

x

∂x
+

∂wrot
y

∂y

= 0, (2)

rotwdiv = −∂wdiv
x

∂y
+

∂wdiv
y

∂x

= 0. (3)
With Eqs. (2) and (3), divw and rotw are respectively given
by divw = divwdiv and rotw = rotwrot. By utilizing the
model shown in Eq. (1), the traditional method [5] realizes the
flow estimation based on the Helmholtz decomposition theo-
rem. However, since Eq. (1) in this method does not include
a translational component, its performance tends to become
degraded when the objects are translated. Therefore, intro-
ducing the translational component w tra into the Helmholtz
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Fig. 1. Properties of the flows: (a) The rotational components
satisfywrot

t (k2) = wrot
t−1(k2), (b) The divergent components

satisfywdiv
t (k4) = wdiv

t−1(k3), and (c) The translational com-
ponents satisfywtra

t (k6) = wtra
t−1(k5).

decomposition theorem, the proposedmethod extends the tra-
ditional model shown in Eq. (1) as follows:

w = wrot + wdiv + wtra, (4)

where wtra (wtra = (wtra
x , wtra

y )) satisfies ∂wtra
x

∂x = 0,
∂wtra

x

∂y = 0, ∂wtra
y

∂x = 0, and ∂wtra
y

∂y = 0. From these four equa-
tions, we can see thatwtra in Eq. (4) denotes the translational
component.

3. PROPOSED FLOW ESTIMATION METHOD

In this section, we propose a novel flow estimation method
with the particle filter based on the Helmholtz decomposition
theorem. From the extended model of the Helmholtz decom-
position theorem shown in the previous section, we define the
state transition model and the observation model of the parti-
cle filter whose state variables are the flows. Furthermore, we
derive the observation density of the particle filter from the
energy function utilized in [5]. With these novel approaches,
we can realize the particle filter estimating the flows based on
the rotation, the divergence, and the translation, which are the
important geometric features expressing the basic motions of
the objects. Then, the proposed method can achieve the accu-
rate estimation of the flows.
First, in 3.1, we define the state transition model and the

observation model. Next, in 3.2, we propose the estimation
method of the flows with the particle filter based on the state
transition model and the observation model shown in 3.1.

3.1. Definition of the state transition model and the ob-
servation model

In this subsection, we define the state transition model and
the observation model based on the extended model of the
Helmholtz decomposition theorem shown in the previous sec-
tion. The proposed method estimates the flow w t between
two successive frames ft−1 and ft (t = 1, 2, ...) of the target
image sequence f . We utilize wt as the state variable in the
particle filter [3]. Then, we define a process, which provides
wt fromwt−1, as the following state transition model at each
pixel k:

wt(k) = wrot
t (k) + wdiv

t (k) + wtra
t (k), (5)

where
wrot

t (k) = wrot
t−1(k) + u1

t , (6)

wdiv
t (k) = wdiv

t−1(k + w̃div
t−1(k)) + u2

t , (7)

wtra
t (k) = wtra

t−1(k + w̃tra
t−1(k)) + u3

t , (8)

w

w̃

wfin
t−1

w̃fin
t−1

wt−1,n

w̃t−1,n

wt,n

w̃t,n

wfin
t

w̃fin
t

(1)Drift (2)Diffuse (3)Measure
Fig. 2. Procedures of the flow estimation scheme in the pro-
posed method.

(a) (b) (c)
Fig. 3. (a) Yosemite (14 frame), (b) Translating Tree (3
frame), and (c) Street (10 frame).

and u1
t – u3

t are additive noises. Furthermore, w̃t−1(k) (=
w̃rot

t−1(k) + w̃div
t−1(k) + w̃tra

t−1(k)) represents the flow whose
direction is opposite to wt−1(k) on the time axis. In the pro-
posed method, w̃t−1(k) estimated by the particle filter in the
same way as wt−1(k) is utilized for calculating the corre-
sponding pixels in Eqs. (7) and (8). Then, Eqs. (6)–(8) are
derived from the following properties.

(A) Rotation
In Eq. (6), wrot

t (k) is almost the same as the rotational com-
ponent of k in the previous frame as shown in Fig. 1 (a).

(B) Divergence and Translation
In Eqs. (7) and (8),wdiv

t (k) andwtra
t (k) are almost the same

as the divergent and translational components of the previous
frame’s pixels corresponding to k in the current one as shown
in Figs. 1 (b) and (c), respectively.

Next, the proposedmethod defines the observationmodel.
In our method, observations of w t are ψt = {ft, ξ

rot
t , ξdiv

t }
and their history is Ψt = {ψ1, ψ2, ..., ψt}, where scalar fields
ξrot
t and ξdiv

t denoting rotational and divergent structures are
calculated by [5], respectively. We define the following two
processes as the observation model. One is that ft is gen-
erated from ft−1 with wt. The other one is that wt is de-
composed into ξrot

t and ξdiv
t . Then, the observation model is

defined as follows:

ft = −� ft−1 · wt + ft−1 + v1
t , (9)

ξrot
t = rotwt + v2

t , (10)

ξdiv
t = divwt + v3

t , (11)

where v1
t – v3

t are the additive noises. When v1
t , v2

t , and v3
t are

zero, Eqs. (9)–(11) become the constraint conditions utilized
in [5]. In the same way as Eqs. (9)–(11), the observation
model of w̃t is defined.
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(a) (b) (c) (d) (e)
Fig. 4. The estimated flows between 14 and 15 frames (Yosemite): (a) The true flows, (b) Estimation result of the proposed
method, (c) Estimation result of the PF with [1], (d) Estimation result of [2], and (e) Estimation result of [5].

(a) (b) (c) (d) (e)
Fig. 5. The estimated flows between 3 and 4 frames (Translating Tree): (a) The true flows, (b) Estimation result of the proposed
method, (c) Estimation result of the PF with [1], (d) Estimation result of [2], and (e) Estimation result of [5].

3.2. Flow estimation with Condensation algorithm
In this subsection, we propose the estimation method of
the flows with the particle filter based on the state transi-
tion model and the observation model shown in the previous
subsection. The proposed method estimates w t with Con-
densation algorithm [3]. We show the procedures of the flow
estimation scheme in Fig. 2 and explain their details as fol-
lows.

(1) Drift
For each particle pn (n = 1, 2, ..., N ), we select the state vari-
ablewt−1,n at time t−1 with state density P (wt−1,n|Ψt−1).
This procedure is performed in such a way that the estimation
errors included in the previous state variables do not affect
the estimation of the current state variables [3].

(2) Diffuse
For each particle pn, the proposed method calculates the state
variablewt,n at time t fromwt−1,n with Eq. (5).

(3) Measure
From the observation density P (ψt|wt,n), P (wt,n|Ψt) is
calculated as follows:

P (wt,n|Ψt) =
P (ψt|wt,n)∑N
i=1 P (ψt|wt,i)

. (12)

By utilizing P (wt,n|Ψt), the flow wfin
t is finally obtained as

follows:

wfin
t =

N∑
n=1

wt,nP (wt,n|Ψt). (13)

With the above procedures, the proposed method estimates
the flows. In the same way, w̃fin

t is calculated.
In order to calculate Eq. (12), we have to obtainP (ψ t|wt,n).

Therefore, the proposed method defines P (ψ t|wt,n) (=
P (ft, ξ

rot
t , ξdiv

t |wt,n)) as follows. First, we assume that
P (ft, ξ

rot
t , ξdiv

t |wt,n) = P (ft−1, ft, ξ
rot
t , ξdiv

t |wt,n). Then,
based on the Bayes theorem, P (ψt|wt,n) is given by

P (ψt|wt,n) = P (ft−1, ft, ξ
rot
t , ξdiv

t |wt,n)

=
P (ξrot

t , ξdiv
t , wt,n|ft−1, ft)P (ft−1, ft)

P (wt,n)
.

(14)
Next, the proposed method assumes that P (w t,n) is constant.
Since ft−1 and ft are known, P (ψt|wt,n) is given by the fol-
lowing equation:

P (ψt|wt,n) ∝ P (ξrot
t , ξdiv

t , wt,n|ft−1, ft). (15)
In [5], P (ξrot

t , ξdiv
t , wt,n|ft−1, ft) is defined by utilizing the

energy function J as follows:

P (ξrot
t , ξdiv

t , wt,n|ft−1, ft) =
1
Z

exp
(
−J

T

)
, (16)

where Z is a normalization constant and T is a temperature.
In the proposed method, the observation model of w t is de-
fined as Eqs. (9)–(11). Furthermore,w tra satisfies ∂wtra

x

∂x = 0,
∂wtra

x

∂y = 0, ∂wtra
y

∂x = 0, and ∂wtra
y

∂y = 0 as shown in the previ-
ous section. Therefore, we define J as follows:

J = Jwt,n
+ γ1Jwrot

t,n,wdiv
t,n

+ γ2Jwtra
t,n

. (17)
In the above equation, Jwt,n , Jwrot

t,n,wdiv
t,n
, and Jwtra

t,n
are re-

spectively obtained by

Jwt,n
=

∫
Ω

(ft − ft−1 + �ft−1 · wt,n)2 dk, (18)

Jwrot
t,n,wdiv

t,n
=

∫
Ω

(ξrot
t − rotwt,n)2 + α|| � (rotwt,n)||2

+(ξdiv
t − divwt,n)2 + α|| � (divwt,n)||2dk, (19)

Jwtra
t,n

=
∫

Ω

(
∂wtra

t,n,x

∂x

)2

+
(

∂wtra
t,n,x

∂y

)2

+
(

∂wtra
t,n,y

∂x

)2

+
(

∂wtra
t,n,y

∂y

)2

dk

=
∫

Ω

|| � wtra
t,n||2 + || � wtra⊥

t,n ||2dk, (20)
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Fig. 6. Performance comparison (AAE) of the proposed
method and the traditional ones.

where wtra
t,n = (wtra

t,n,x, wtra
t,n,y), �wtra

t,n = (
∂wtra

t,n,x

∂x ,
∂wtra

t,n,y

∂y ),

and�wtra⊥
t,n = (−∂wtra

t,n,x

∂y ,
∂wtra

t,n,y

∂x ). Furthermore, α, γ1, and
γ2 are the positive constants and Ω is an image plane of f .
When γ2 is zero, J in Eq. (17) becomes the energy function
utilized in [5].
The proposed method defines the state transition model

and the observation model as shown in Eqs. (5) and (9)–(11).
Furthermore, we derive the observation density adjusting to
the Helmholtz decomposition theorem from the energy func-
tion J in Eq. (17). Thus, we realize the particle filter estimat-
ing the flows based on the rotation, the divergence, and the
translation, which are the important geometric features ex-
pressing the basic motions of the objects. Consequently, an
accurate flow estimation can be achieved.

4. EXPERIMENTAL RESULTS

In this section, we show some simulation results in order to
confirm the high performance of the proposed method. We
utilize Yosemite (316×252pixels, 8 bits/pixel, 15 frames) and
Translating Tree (150×150 pixels, 8 bits/pixel, 20 frames)
shown in Figs. 3(a) and (b) for the test image sequences.
These image sequences are created by utilizing the true flows.
Next, Figs. 4 and 5 show the true flows and the estimated
flows by the proposed method, the method utilizing the parti-
cle filter based on [1] (PF with [1]), and the traditional ones
[2, 5]. The state transition model of the PF with [1] is defined
as follows:

wt(k) = wt−1(k) + ut, (21)
where ut = u1

t + u2
t + u3

t . The observation model of the PF
with [1] is defined as Eq. (9). In the proposed method, u m

t

∼ N(0, σ2) (m = 1, 2, 3), where N(0, σ2) is the Gaussian
whose mean and variance are 0 and σ2, respectively. We set
σ to 0.1 in this simulation. From Figs. 4 and 5, we can see that
the proposedmethod can estimate the flows more successfully
than the traditional ones.
In order to evaluate the proposed method quantitatively,

we calculate an Average Angular Error (AAE) [6] in the case
of Yosemite as shown in Fig. 6. Furthermore, Table 1 denotes
the means of the AAE’s in the case of Yosemite, Translating
Tree, and Street (200×200 pixels, 24 bits/pixel, 20 frames)
shown in Fig. 3(c). In Fig. 6, since the traditional methods
[2, 5] do not consider the estimation errors of the previous
flows, their performance is degraded when t = 7, 8, ..., 13. In
contrast, the proposed method utilizes the particle filter and
its performance is high. From Table 1, we can see that the
proposed method has achieved 0.47–0.97◦ improvement in
the case of the best published results in the PF with [1]. Since

Table 1. The means of the AAE’s of the proposed method
and the traditional ones.

PF with [1] Ref. [2] Ref. [5] Ours
Yosemite 7.90◦ 9.25◦ 10.25◦ 7.43◦

Translating Tree 6.87◦ 8.29◦ 8.54◦ 6.32◦

Street 9.29◦ 10.07◦ 9.24◦ 8.32◦

we estimate the flows based on the rotation, the divergence,
and the translation, which are the important geometric fea-
tures expressing the basic motion of the objects, the proposed
method is more accurate than the PF with [1].

5. CONCLUSIONS

This paper proposes a novel flow estimation method with the
particle filter based on the Helmholtz decomposition theorem.
The proposedmethod extends the model of the Helmholtz de-
composition theorem and enables the decomposition of the
flows into the rotational, divergent, and translational compo-
nents. Furthermore, the proposed method realizes the intro-
duction of the Helmholtz decomposition theorem into the par-
ticle filter. Consequently, an accurate flow estimation based
on the rotation, the divergence, and the translation, which
are the important geometric features expressing the basic mo-
tions of the objects can be achieved. Some simulation results
are shown to confirm the high performance of the proposed
method.
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