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ABSTRACT

Background subtraction is a crucial step in many automatic

video content analysis applications. While numerous accept-

able techniques have been proposed so far for background

extraction, there is still a need to produce more efficient al-

gorithms in terms of adaptability to multiple environments,

noise resilience, and computation efficiency. In this paper, we

present a powerful method for background extraction that im-

proves in accuracy and reduces the computational load. The

main innovation concerns the use of a random policy to select

values to build a samples-based estimation of the background.

To our knowledge, it is the first time that a random aggrega-

tion is used in the field of background extraction. In addition

we propose a novel policy that propagates information be-

tween neighboring pixels of an image. Experiment detailed

in this paper show how our method improves on other widely

used techniques, and how it outperforms these techniques for

noisy images.

Index Terms— Surveillance, Pattern recognition, Signal

analysis, Video signal processing

1. INTRODUCTION

Background subtraction is one of the most widely used tool

in automatic video content analysis, especially in video-

surveillance. Numerous methods for background subtraction

techniques have been proposed over the years (see [1, 2] for

surveys). In most of them, a model of the recent history is

built for each pixel location. The classification of new pixel

values is achieved by comparing each of them to the corre-

sponding pixel models. These techniques can be divided in

two categories: (i) parametric techniques that use a paramet-

ric model for each pixel location and (ii) samples-based tech-
niques that build their model by aggregating previously ob-

served values for each pixel location.

The Gaussian Mixture Model [3] is probably the most pop-

ular parametric technique. It is adaptive and able to deal with

the multi-modal appearance of the background of a dynamic
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environment (changing time of day, clouds, tree leafs,...).

However since its sensitivity cannot be accurately tuned,

its ability to successfully handle high- and low-frequency

changes in the background is debatable, as detailed in [4].

Furthermore the estimation of the parameters of the model

(especially the variance) can become problematic for noisy

images.

Samples-based techniques [4, 5, 6] circumvent a part of the

parameters estimation step by building their models from ob-

served pixel values. This enhances their robustness to noise.

They provide fast responses to high-frequency events in the

background by directly including newly observed values in

their pixel models. However, their ability to successfully han-

dle concomitant events evolving at various speeds is limited

since they update their pixel models in a first-in first-out man-

ner. As a matter of fact, some of them use two sub-models for

each pixel [4, 5]: a short term model and a long term model.

While this can be a convenient solution, it is artificial and re-

quires fine tuning to work properly in for any given situation.

This paper presents a samples-based algorithm for back-

ground subtraction. The first contribution is a novel a random

selection policy that ensures a smooth exponentially decaying

lifespan for the sample values that constitute the pixel models.

It makes it able to successfully deal with concomitant events

with a single model of a reasonable size for each pixel. The

second contribution is related to the post-processing on which

all the abovementioned methods rely to give some degree of

spatial consistency to their results. For that purpose, we use

an innovative, fast, and simple spatial information propaga-

tion method that randomly diffuses pixel values across neigh-

boring pixels. Accordingly, our method is able to produce

spatially coherent results directly. As a third contribution, we

provide and instantaneous initialization technique that makes

our algorithm usable starting from the second frame of a se-

quence.

Section 2 describes our new background subtraction algo-

rithm. Experimental results are detailed in Section 3. Sec-

tion 4 concludes the paper.
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Fig. 1. To classify pt(x), we count the number of samples

contained in the sphere of radius R around pt(x).

2. VIBE: A NEW ALGORITHM FOR BACKGROUND
SUBTRACTION

We now describe our background subtraction algorithm. We

call it ViBe, which stands for “Visual Background Extractor”.

We begin by defining the pixel model we use to estimate the

background.

2.1. Pixel model and classification process

We denote by pt(x) the value at time t of the pixel x. Many

advanced techniques (including kernel density estimation [4]

and the gaussian mixture model [3, 7] are used to provide an

estimate of the temporal probability density function (pdf) of

a pixel x. Once the model is built, the algorithm will clas-

sify a pixel value pt(x) as a background or foreground pixel

value depending on how it “fits” within the estimated pdf. A

major drawback of this approach is that the evaluation of the

pdf is a global process; outlayers stored in the pixel model

will change the shape of the pdf although their values in the

polychromatic space might be distant to pt(x).
Our approach is considerably different. We impose the in-

fluence of a value in the polychromatic space to be limited to

the local neighborhood. In practice, we do not estimate the

pdf, but use a set of sample values as a pixel model. To clas-

sify a value pt(x), we compare it to its closest values among

the set of samples by defining a sphere SR(pt(x)) of radius

R centered on pt(x). A pixel value is then classified as back-

ground if the cardinality, denoted �, of the set intersection of

this sphere and the set of samples {p1, p2, . . . , pn} (see Fig-

ure 1) is above a given threshold �min. More formally, we

compare �min to

�{SR(pt(x)) ∩ {p1, p2, . . . , pn}}. (1)

Two parameters determining the accuracy of our model are

the radius R of the sphere and the minimal cardinality �min.

Experiments have shown that a unique radius R and a cardi-

nality of 2 offers excellent performances. There is no need to

adapt these parameters during the background subtraction nor

do we need to change them for different pixel locations within

the image. Note that since the number of samples n and �min

are chosen to be fixed and impact on the same decision, the

sensitivity of model can be adjusted using the �
n ratio.

2.2. Model update over time

To achieve accurate results over time and to handle new ob-

jects that appear in a scene, the model has to be updated reg-

ularly. Since with our model we compare xt directly to the

samples, the question on which samples have to be kept by

the model and for how long is of crucial importance. In Sec-

tion 2.2.1, we propose an original lifespan policy for the val-

ues over time.

The question of including or not foreground pixels val-

ues in the model is always raised when designing a back-

ground estimation method. Conservative update (no inclu-

sion of foreground values in the model) seems, at first, to be

the obvious choice but leads to deadlock situations if back-

ground objects suddenly start to move (e.g. parked car). On

the contrary, blind update is likely to include foreground in-

formation in the background model when encountering slow

moving targets. Rigorously speaking, temporal information

is not available when the background is masked. As back-

ground subtraction is a spatio-temporal process, the best fall-

back strategy consists to exploit spatial information. This is

the role played by the information propagation method pro-

posed in Section 2.2.2. Consequently, we can afford the use

of a conservative update scheme. Ghosts caused by moving

background objects gradually disappear as information about

the background evolution diffuses from the neighboring pix-

els.

2.2.1. Sample values lifespan policy

Previous methods use first-in first-out policies to update their

models. To properly deal with wide ranges of events in the

scene background, some authors (e.g. [6]) choose to include

large numbers (up to 200) of samples in the pixels models.

Others [4, 5] even incorporate two temporal sub-models to

successfully handle fast and slow modifications.

From a theoretical point of view, it might be better to guar-

antee a monotonic decay for the probability of a sample value

to remain inside the set of samples. It improves the relevance

of the estimation and allows the use of fewer samples. We

manage to do this by choosing, randomly, which sample to

replace when updating a pixel model. Once the sample to be

discarded has been chosen, the new value replaces the dis-

carded sample (see Figure 2). Mathematically, one shows

that, according to this updating mechanism, the probability

for a pixel sample present a time t0 to be still present at a

later time t1 is
(

n−1
n

)t1−t0
, which can be rewritten as

P (t0, t1) = e− ln( n
n−1 )(t1−t0). (2)
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Fig. 2. This figure shows 3 of the n equally probable possible

models after the update of the model shown on Figure 1.

2.2.2. Spatial consistency

Previous explanations and techniques do ignore the pixel lo-

cation inside the image. But to ensure the spatial consistency

of the whole image model and handle practical situations such

as small camera movements or slowly evolving background

objects, we adopt a technique similar to that developed for the

updating process in which we choose at random and update a

pixel model in the neighborhood of the current pixel. Let us

denote by NG(x) and p(x) respectively the spatial neighbor-

hood of a pixel x and its value. Assume that it was decided

to update the set of samples of x by inserting p(x). Then we

also use this value p(x) to update the set of samples of one of

the pixels in the neighborhood NG(x), chosen at random.

Since pixel models contain many samples, irrelevant infor-

mation that could accidentally be inserted into the neighbor-

hood model do not affect the accuracy of the detection. Fur-

thermore, the erroneous diffusion of irrelevant information is

blocked by the need to match an observed value before it can

further propagate. This natural limitation inhibits the diffu-

sion of error. With the operational constraints of very low

noise levels and a fixed camera, our approach to ensure spatial

consistency presents results similar to other techniques. How-

ever when these constraints are not met, for example when the

camera moves or in the case of low illumination, ViBe outper-

forms other techniques. In Section 3, we will further analyze

the segmentation results in the presence of noise.

Note that none of the selection policy or the spatial prop-

agation is deterministic. In other words, if the algorithm is

run over the same image again, the results will always differ.

Although unusual, the strategy to let a random process decide

on the samples to be discarded proves to be very powerful.

This is different from known strategies that introduce a fad-

ing factor or that uses a long term and a short term history of

values.

3. EXPERIMENTAL RESULTS

All our tests were conducted using a model containing 20

sample values, a sphere of radius 30 and a cardinality of 2

(see equation 1). The set of parameters is fixed (there was no

parameters tuning).

3.1. Model initialization

Although the model could easily recover from any type of

initialization, for example by choosing a set of random val-

ues, it is convenient to get an accurate background estimate as

soon as possible. Ideally we would like to be able to segment

the video sequences starting from the second frame, the first

frame being used to initialize the model. Since no temporal

information is available prior to the second frame, we popu-

late the pixel models with values found in the spatial neigh-

borhood of each pixel. More precisely, we fill them with val-

ues randomly taken in their neighborhood on the first frame.

This strategy proved to be successful: the background esti-

mate is valid from the second frame. The only drawback is

that the presence of a moving object in the first frame will

introduce a ghost object that has to fade over time.

3.2. Comparison with the gaussian mixture model

The Enhanced Gaussian Mixture Model (EGMM) presented

in [5, 7] is representative as a state-of-the-art deterministic

parametric method for background subtraction. A visual com-

parison of the results obtained using it and ViBe leads to

the conclusion that, while being different, both techniques

give overall equivalent segmentation accuracy for indoor se-

quences. The higher false positives rate of the EGMM algo-

rithm is balanced by the higher false negatives rate of our al-

gorithm. However, foreground objects boundaries are sharper

with our technique.

Outdoor cameras sequences lead to different observations

as images are often of poorer quality. They suffer from cam-

era shake caused by the wind, higher level of background

motion and high image compression for bandwidth reduc-

tion issues. One of our test sequences was taken on a rainy

and windy day with a strong compression ratio. While ViBe

managed to keep honorable results, the EGMM algorithm

clearly suffered more from these difficult conditions. The

noise seems to prevent the EGMM algorithm from estimat-

ing correctly the parameters of its model.

3.2.1. Robustness against noise

To be able to objectively compare EGMM and ViBe in noisy

conditions, we produced ground truth segmentation maps of

an outdoor sequence using a blue-screen like process. We

added salt-and-pepper noise to the ground-truth sequence,

and computed the precision and the recall for several levels

of noise.

Noisy images were produced by adding a uniformly dis-

tributed random noise on all the pixels. The noise was intro-

duced to produce PSNR’s ranging from 16 [dB] to 51 [dB].

The visual results shown in Figure 3 are self-explanatory.

Nevertheless, let’s look at the precision and recall curves of

Figure 4. The curves clearly exhibit that ViBe resists to

important additive noise levels, even for PSNR’s as low as
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Fig. 3. Results of ViBe (left) and of EGMM (right) for

PSNR’s of 51 [dB], 39 [dB], 30 [dB], 25 [dB], and 19 [dB].

30 [dB]. On the other side, the precision of the EGMM algo-

rithm decays very quickly, even for small amounts of added

noise. In areas where precision remains at meaningful levels,

the recall curve of ViBe in RGB color-space lays in between

the one obtained by our technique in the HSV colorspace and

the one obtained by the EGMM algorithm.

4. CONCLUSIONS

In this paper, we present a novel samples-based background

subtraction algorithm called ViBe. Thanks to our update pol-

icy, our spatial information propagation method, and our in-

stantaneous initialization technique, we are able to deal with

several concomitant events evolving at various speeds, to get

spatially coherent segmentation maps without any form of

post-processing, and to get meaningful results starting from

the second frame of a sequence. Furthermore, since ViBe can

afford the use of a strictly conservative update scheme and di-
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Fig. 4. Precision (left) and recall (right) curves of ViBe and

the EGMM algorithm for several PSNR’s.

rectly compares the pixel values to the samples stored in the

pixel models, it exhibits an excellent robustness to noise.

During our experiments, we used ground truth segmenta-

tion maps of an outdoor sequence to compare the results of

ViBe with those of an independent state-of-the-art technique

(EGMM presented in [7]). We showed that while the perfor-

mances of EGMM decay very quickly in the presence of noisy

data, our technique strongly resists to important amounts of

noise. It even manages to produce accurate results for PSNR’s

as low as 30 [dB]. ViBe does not require any fine tuning; it

produces good results in various environments with a fixed set

of three parameter values (number of samples stored for each

pixel model, matching threshold between a pixel value and a

sample, and number of matches needed to incorporate a pixel

into the background of the scene).
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