
A FAST CABAC RATE ESTIMATOR FOR H.264/AVC MODE DECISION

Jongmin Hahm, Jaemoon Kim and Chong-Min Kyung

School of Electrical and Computer Engineering & Computer Science
Division of Electrical Engineering

Korea Advanced Institute of Science and Technology

ABSTRACT

H.264/AVC coders use the rate-distortion (R-D) cost function to de-
cide the coding mode for each coding unit for better R-D tradeoff. To
evaluate the R-D cost function, both the bit rate and the video quality
degradation of the candidate mode must be calculated. In this paper,
a fast context-adaptive binary arithmetic coding (CABAC) rate es-
timation scheme is proposed to accelerate the rate calculation. The
speed of the proposed rate estimator depends only on the number
of contexts used in the coding unit. Experimental results show that
the proposed rate estimator reduces about 20% of the computational
complexity of the R-D optimized mode decision when it is imple-
mented as software. The entire encoder implemented as software
is then accelerated by 16% with negligible degradation in the R-D
performance. If implemented as hardware, the proposed scheme is
expected to accelerate the rate estimation for a macroblock by 5 to
18 times faster than the conventional CABAC operation.

Index Terms— H.264/AVC, mode decision, rate-distortion op-
timization (RDO), estimation, CABAC.

1. INTRODUCTION

Two important operations performed to improve the rate-distortion
(R-D) performance of H.264/AVC coders are the mode decision
based on the R-D tradeoff and the context-adaptive binary arith-
metic coding (CABAC). Each of them saves about 10% of the total
bit rate [1, 2]. However, they require a significant additional compu-
tation, especially when they are employed together. Evaluating the
R-D cost function for each candidate mode is the major source of
the additional computational complexity. Several algorithms have
been suggested to accelerate the evaluation [3–5], but they are based
on context-adaptive variable length coding (CAVLC), not CABAC.
One of the recent studies [6] focused on the rate of the CABAC,
but its application is limited to intra-mode decisions. A general rate
estimation scheme based on CABAC is still needed.

CABAC is a component of an H.264/AVC coder which is often
implemented as hardware for fast operation. The speed of CABAC
hardware is usually limited by its sequential nature; the context in-
formation and internal variables of the arithmetic encoder such as
interval range are updated after coding each input symbol. State-of-
the-art CABAC coders can process about two symbols per cycle [7]
which is still not sufficient for the real time mode decision consider-
ing the R-D cost. Computational complexity of the rate calculation
was reduced by modeling the behavior of the arithmetic coder [8].
Although the computation time required for obtaining the rate was
considerably reduced, this rate estimator still suffers from the same
problem as conventional CABAC encoders when implemented as
hardware for further speed-up because the context models are still
maintained as in the original CABAC algorithm.

In this paper, we propose a rate estimator which approximates
the context modeling part of CABAC, based on the rate model of
CABAC derived in [8]. The R-D optimized mode decision is re-
viewed in Section 2. In Section 3, rate estimation methods for con-
secutive the most probable symbols (MPSs) and the least probable
symbols (LPSs) are proposed and they are combined to process se-
quences with arbitrary length. Experimental results are shown in
Section 4 and, finally, conclusions are given in Section 5.

2. R-D OPTIMIZED MODE DECISION

In H.264/AVC reference software, the mode decision is performed
with either the low-complexity (LC) cost function or the high-
complexity (HC) cost function. The mode decision with the HC cost
function is called the R-D optimized mode decision and the cost
function is called the R-D cost function. The R-D optimized mode
decision selects proper coding options for each coding unit, e.g.,
macroblock, based on the Lagrange multiplier technique. The R-D
cost function is expressed as

J = D + λR (1)

where λ is the Lagrange multiplier, D is the distortion induced dur-
ing the encoding process, and R is the number of coded bits. This
cost function is evaluated for each candidate coding mode to choose
the one with the least. The distortion, D, is measured as the sum
of squared differences (SSD) between the original coding unit and
the reconstructed one. The rate, R, is the length of the coded data
after transform, quantization and entropy coding operations. These
operations are the most complex part of the R-D optimized mode
decision.

3. PROPOSED RATE ESTIMATOR

The input data of CABAC is composed of syntax elements, each of
which is coded using certain number of contexts [2]. To begin the
estimation, we first group input symbols that use the same context
as a data segment. Then the entire input data can be considered as
a row of data segments. (see Fig. 1 for an example.) To simplify
the rate estimation process, we collect data segments using the same
context to form a segment group, and the processing order between
data segments ignored. With this modification, we can utilize the
correlation between neighboring input symbols in a segment group.
This manipulation can be made without loss of accuracy if the rate
estimation table of [8] is used. Because variables of the arithmetic
coder such as interval range need not be managed, the rate of seg-
ment groups are independent of one another.

Because there is no dependency among segment groups, the rate
of each segment group can be obtained independently. If we assume

929978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

DS0

DS1

DS2

DS0

DS1

DS2

DS0

DS0

Original Data of

a Coding Unit

DS0

DS0

DS0

DS0

DS1

DS1

DS2

DS2

Segment

Groups

Rate

Estimation

Rate

Estimation

Rate

Estimation

ΣRχ,1

Rχ,2

Rχ,0

Rχ

SG0

SG1

SG2

Fig. 1. An illustrative example showing the concept of the proposed
rate estimator and related terms. DSn is a set of consecutive symbols
using the n-th context, and SGm stands for the m-th segment group.
It is assumed that the coding unit data in this example uses three
contexts for CABAC encoding.

a coding unit χ uses nχ context models, the rate for the coding unit
data can be expressed as

Rχ =

nχ∑
j=1

Rχ,j (2)

where Rχ,j is the rate of the segment group using the j-th context
model. Our approach is to estimate each value of Rχ,j in a constant
time, regardless of the constituent number of bits. Since the number
of contexts used for a coding unit is much smaller than the number
of symbols, the computational effort required to estimate the rate for
a coding unit can be drastically reduced.

3.1. Handling Consecutive MPSs

If there are consecutive MPSs in a segment group, calculating the
state index σ after coding the sequence is straightforward because
the state index is incremented by one for each MPS input. If we
denote the number of consecutive MPSs as nMPS, σnew, the state
index after processing nMPS MPSs, is calculated by the formula

σnew = min(σold + nMPS, 62) (3)

where σold is the initial state.
For the rate estimate, we look up the estimation table just once

for the whole sequence and multiply it by the length of the sequence.
The representative table entry is selected with the following equa-
tion:

σ = min(σold + �nMPS/2� , 62) (4)

The rate estimate for the MPS sequence is now expressed as

B(SMPS) = �W (σ, MPS) · nMPS/8� (5)

where SMPS is a bit sequence vector of dimension nMPS which con-
sists of the MPSs only, B(SMPS) is the estimated number of bits
generated by SMPS, and W is a function corresponding to the rate
estimation table (the one defined in [8]) lookup.

3.2. Handling Consecutive LPSs

The method described above cannot be directly extended to a se-
quence of the LPSs since the state transition is not regular as in

001020

30

41

50

61

70

81

90

101

110

121

130

141

152

160

171

182

193

200

211

222

233

244

255

260

271

282

293

304

315

326

337

340

351

362

373

384

395

406

417

428

439

4410

4511

4612

4713

4814

4915

500 511

544 555

566 577

588 599

6010 6111

6212

522 533

13 12 11 10 9 8 7 6 5 4 3 2 1 0
Group

Number

Fig. 2. The approximated state transition diagram for LPS inputs
with the group numbers and offsets. The nodes of the diagram repre-
sent the state indices σ and their subscripts denote the group offsets.
Group numbers are shown at the top.

the MPS case. To resolve this problem, the updated σ is now ap-
proximated, instead of calculating its exact value. First, we divide
63 different σ’s into groups as in Fig. 2. The group number for
each state represents the number of consecutive LPSs required to
bring the state to 0. The group offset is sequentially assigned to
each state in a group, such that a larger integer is assigned to a
state with larger index. The arrows show the approximated state
transition; the transitions are different from the ones defined in the
standard, but has a regular structure. Based on this graph, the state
after coding a sequence can be estimated by a few arithmetic and
logical operations. When there are n consecutive LPSs, the group
number is decreased by n and the updated group offset is approx-
imated by n-bit right shifting of the old one. Denoting the group
number of σold by Gnum(σold), the group offset by Goff(σold), and
the function mapping the group number and offset onto the state by
G−1(number, offset), we can estimate σnew by

σnew = G−1(Gnum(σold) − nLPS, Goff(σold) � nLPS) (6)

provided that the MPS is not changed, i.e., Gnum(σold) ≥ nLPS

holds. Otherwise, (6) is substituted by (7) and the MPS change is
recorded.

σnew = nLPS − Gnum(σold) (7)

These equations provide a method for estimating the state without
sequentially processing the state transition for each LPS input.

For the rate estimate, we combine the entries of the rate estima-
tion table of [8] with the probability for each state to obtain the esti-
mated number of bits for each group. Expressing the sum of proba-

bilities for state indices in a certain group Ĝ as P =
∑

s∈Ĝ
pσ(s),

the rate estimate for Ĝ is formulated as

BG(Ĝ) =
∑
s∈Ĝ

pσ(s) · B(s, LPS)

P
. (8)

The resultant rate estimates and corresponding quantized weights
WG are shown in Table 1.

Now that the estimation table is established, we need to deter-
mine which entry to read. We first choose a group with the formula;

G = max(Gnum(σold) − �min(nLPS, Gnum(σold))/2� , 0) (9)

Then the number of bits generated by nLPS consecutive LPSs is es-
timated by

B(SLPS) =
⌊
(WG(G) · nLPS)/8

⌋
. (10)

930

Table 1. The Rate Estimation Table for LPS Groups

Group Rate estimate Weight

Ĝ BG(Ĝ) WG(Ĝ)
0 1.00 8
1 1.00 8
2 1.00 8
3 1.34 11
4 1.34 11
5 1.60 13
6 1.71 14
7 1.82 15
8 2.00 16
9 2.34 19
10 2.69 22
11 3.16 25
12 3.95 32
13 5.31 42

However, (10) holds only if the MPS is not changed while process-
ing the sequence. If Gnum(σold) < nLPS holds, the MPS will be
changed and nLPS−Gnum(σold) bits will be processed as the MPSs.
Thus, in this case, (10) is substituted by

B(SLPS) =
⌊
(WG(G) · nLPS)/8

⌋
+

(nLPS − Gnum(σold)).
(11)

Here we simplified the process for the consecutive MPSs after the
MPS change assuming that the weight for each MPS is 8. This as-
sumption causes little error in most cases since the occurrence of the
MPS when state index is small often results in one output bit, and
the length of consecutive LPSs is usually short such that the number
of symbols processed as the MPS is small.

3.3. Handling Arbitrary Input Sequences

Now that we have the estimation methods for both consecutive
MPSs and LPSs, we use these algorithms to handle arbitrary input
sequences. To this end, we use the number of 0’s and 1’s (n0 and
n1, respectively) in the given input sequence. If the context model
has 0 (1) as the MPS, n0 (n1) is assigned to nMPS and n1 (n0) is
assigned to nLPS. The exact order of the input symbols is neglected
and the sequence is assumed to have a sequence of MPSs followed
by a sequence of LPSs. The rate estimate of arbitrary input sequence
S is now expressed as

B(S) = B(SMPS) + B(SLPS) (12)

where B denotes the estimation function and SMPS is a bit sequence
comprising nMPS MPSs only and SLPS is one comprising nLPS

LPSs. Since we already have the estimation models for consecu-
tive MPSs and LPSs, B(SMPS) and B(SLPS) can be separately cal-
culated. However, the state index, σ, should be updated using (3)
before beginning the computation for the LPS part because the MPS
part is assumed to have been processed before the LPSs. Using the
methods described above, we can obtain the rate estimate for arbi-
trary sequences.

Despite the ignorance of exact details of the input sequence, this
approach yields negligible error. This is because the length of seg-
ment group is usually not long enough to yield a significant error.
According to a set of experiments conducted on various video se-
quences, the length of more than 98% of the segment groups was

Context Loader

Rate

Estimator 1

Rate

Estimator 2

Σ Accumulator

>>3
Rate

Estimate

CABAC

Context Memory

Input

Data

Rate Estimator

Segment

Buffers

Binarizer

Fig. 3. A block diagram of a hardware architecture using two rate
estimators.

shorter than 16 bits. The additional estimation error caused by this
approximation is 0.4 bit on average, which is acceptable. The loss of
accuracy when the input sequence is long can be minimized by set-
ting the maximum number of symbols processed at the same time,
lmax, as a finite number. This parameter was considered to be ∞
until now. For example, if we set lmax = 16, a 64-bit-long input se-
quence is divided into four 16-bit sequences and processed sequen-
tially. With a small lmax, the estimation accuracy can be improved
while the speed is decreased.

After estimating the rate for a coding unit, the resultant state in-
dices can be different from those obtained from the original CABAC
algorithm. If such inaccurately updated indices are used as the initial
condition for estimating the rate of the next coding unit, the estima-
tion error will be larger for the coding units in the latter part of the
slice. On the other hand, after the mode decision of a coding unit,
the coding unit undergoes the original CABAC entropy coding, in
which the updated state indices are obtained. If the state indices af-
ter the entropy coding of the current unit are used to encode the next
coding unit, the error propagation can be avoided.

For further improvement in the estimation speed, parallelism can
be exploited by using multiple rate estimators at the same time since
there is no dependency among segment groups. A hardware archi-
tecture using two rate estimators is proposed in Fig. 3. The data
for a coding unit is first binarized as in the original CABAC algo-
rithm and organized as segment groups in the segment buffers. The
context loader reads contexts for segment groups from the context
memory of the CABAC module. The rates independently estimated
for each segment group are added up until all segment groups are
processed. The rate estimate can be obtained by 3-bit right shifting
of the accumulated result. (corresponding to a division by 8 and a
floor operation.) If the hardware architecture is carefully designed to
achieve a single-cycle throughput per segment group, nRE segment
groups can be processed in single cycle with nRE rate estimators.
Note that the speed of this hardware is proportional to the number of
contexts used in a coding unit, which is usually much smaller than
the number of input symbols.

4. EXPERIMENTAL RESULTS

The performance of the proposed rate estimator was evaluated by ap-
plying it for the mode decision process of the H.264/AVC reference
software. We compared the R-D performance of the mode decision
with the proposed rate estimator to the one with the HC cost func-
tion defined in JM 10.2. The method of [9] was used with the QPs
28, 32, 36, 40 to obtain ΔPSNR and ΔRate. The time reduction in

931

Table 2. Experimental Results

Size Sequence
ΔPSNR ΔRate ΔTRD ΔTTotal

(dB) (%) (%) (%)

QCIF

Carphone −0.001 0.002 17.17 13.72

Coastguard −0.002 0.048 19.29 15.31

Mobile −0.001 0.038 26.28 21.62

Stefan −0.001 0.002 25.35 20.23

Football −0.029 0.919 17.41 13.14

CIF

Bus −0.004 0.077 20.10 15.80

Coastguard −0.005 0.200 17.85 14.05

Mobile −0.012 0.335 24.35 20.03

Stefan −0.001 0.012 20.48 16.53

Football −0.060 1.624 15.32 11.49

Average −0.010 0.330 20.36 16.19

the R-D cost computation, ΔTRD was computed with the following
equation:

ΔTRD =
ToriginalRDO − TproposedRDO

ToriginalRDO − TwithoutRDO
× 100% (13)

where ToriginalRDO and TwithoutRDO are the encoding time of the
reference code when the RDO option is turned on and off, respec-
tively, and TproposedRDO is the encoding time when the proposed
rate estimation scheme is adopted with the RDO option turned on.
The total encoding time reduction is computed by

ΔTTotal =
ToriginalRDO − TproposedRDO

ToriginalRDO
× 100%. (14)

One reference frame was used with the motion vector search range
of ±16 and UMHexagonS was adopted for fast ME during the ex-
periments. The GOP structure was IBPBP. Table 2 shows the exper-
imental results from various video sequences. It is shown that usage
of the proposed rate estimator can save 20.36% of the R-D cost com-
putation and 16.19% of the total encoding time on average with only
0.33% rate increment or 0.010dB PSNR drop.

The performance gain of the proposed rate estimator hardware
is proportional to the ratio of the number of symbols of a coding unit
to the number of contexts used. For example, if we assume that the
conventional CABAC hardware and the proposed rate estimator have
the throughput of 1 symbol/cycle and 1 segment group/cycle, respec-
tively, the speed-up of the proposed rate estimator is approximately
expressed by dividing the number of symbols by the number of con-
texts. It is shown in Table 3 that the maximum number of symbols
used in a macroblock is about 5 to 18 times larger than the maxi-
mum number of contexts, depending on the test sequence and the
QP. Thus, the proposed rate estimator hardware can operate faster
than conventional CABAC hardware implementations by a similar
ratio, i.e., 5 to 18.

5. CONCLUSION

In this paper, we proposed a rate estimator for the R-D optimized
mode decision of H.264/AVC. Experimental data suggested that the
proposed estimator can reduce the computational complexity of the
R-D cost function by 20.36% and the total encoding time by 16.19%
with almost no degradation in R-D performance. The proposed rate

Table 3. Comparison Between the Maximum Number of Symbols
and Contexts

Sequence QP
Max Max Performance

Symbols # Contexts Gain

Carphone
20 1600 129 12.40

(QCIF)
28 912 113 8.07

36 416 83 5.01

Stefan
20 2313 129 17.93

(QCIF)
28 1289 118 10.92

36 678 100 6.78

Bus
20 1915 131 14.62

(CIF)
28 1090 119 9.16

36 550 93 5.91

Stefan
20 1838 124 14.82

(CIF)
28 999 115 8.69

36 529 90 5.88

estimator can obtain the rate 5 to 18 times faster than conventional
CABAC implementations if implemented as hardware. Designing
the hardware architecture of the proposed estimator remains as fur-
ther work.

6. REFERENCES

[1] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for
video compression,” IEEE Signal Processing Mag., vol. 15, no.
6, pp. 74–90, 1998.

[2] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adap-
tive binary arithmetic coding in the H.264/AVC video compres-
sion standard,” IEEE Trans. Circuits Syst. Video Technol., vol.
13, no. 7, pp. 620–636, 2003.

[3] Q. Chen and Y. He, “A fast bits estimation method for rate-
distortion optimization in H. 264/AVC,” in Proc. Picture Coding
Symp. (PCS 2004), San Francisco, CA, 2004, pp. 133–134.

[4] Yu-Kuang Tu, Jar-Ferr Yang, and Ming-Ting Sun, “Efficient
rate-distortion estimation for H.264/AVC coders,” IEEE Trans.
Circuits Syst. Video Technol., vol. 16, no. 5, pp. 600–611, 2006.

[5] M. G. Sarwer and Lai-Man Po, “Fast bit rate estimation for
mode decision of H.264/AVC,” IEEE Trans. Circuits Syst. Video
Technol., vol. 17, no. 10, pp. 1402–1407, 2007.

[6] Shuwei Sun and Shuming Chen, “A novel fast intra-mode deci-
sion algorithm for H.264/AVC,” in Image and Signal Process-
ing, 2008. CISP ’08. Congress on, 2008, vol. 1, pp. 324–328.

[7] R. R. Osorio and J. D. Bruguera, “High-throughput architecture
for H.264/AVC CABAC compression system,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 16, no. 11, pp. 1376–1384, 2006.

[8] Jongmin Hahm and Chong-Min Kyung, “Efficient CABAC rate
estimation for H.264/AVC mode decision,” IEEE Trans. Cir-
cuits Syst. Video Technol., submitted for publication.

[9] Gisle Bjontegaard, “Calculation of average PSNR differences
between RD-curves,” in Proc. ITU-T Q.6/SG16 VCEG 13th
Meeting, Austin, TX, Apr. 2001, Doc. VCEG-M33.

932

