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ABSTRACT 

 
H.264 is a computationally intensive video codec striving 
for achieving the best quality for the compressed video. 
The computational complexity poses as a challenge for 
power-constrained applications. We present a system level 
complexity reduction for H.264 video encoding by 
allocating resources based on computational complexity 
and quality trade-off. We develop a framework which 
allocates the computational power of the encoder adaptive 
to video contents and also scales with the available battery 
power using a ROI classification method. Analysis is done 
to profile the key modules of the encoder which can be 
power-optimized while allocating resources. The results 
of the encoder module analysis are combined with the 
motion content analysis to obtain a power efficient 
encoder parameter set which reduces the computations 
and hence the power consumed. Our simulation results on 
the JM H.264 framework confirm our hypothesis and 
computational savings of more than 50% with quality 
degradation less than 1%  is achieved thereby extending 
it’s feasibility for battery powered wireless devices. 
 

Index Terms — H.264 Video Encoding, Wireless 
devices, ROI coding, power optimization. 
 

1. INTRODUCTION 
 
Multimedia applications such as real time video capture and 
streaming in mobile wireless devices (e.g., video telephony) 
have great potentials. H.264/AVC has rich tool sets to heavily 
compress the video contents at desired quality and generate 
packetized bit streams for such wireless transmission. This 
efficiency comes at the cost of increased computational 
complexity and demanding processing power requirements. The 
battery technology has not progressed at the rate needed to meet 
the computational power requirements of multimedia rich 
wireless devices. In critical wireless applications such as combat 
mission, battery-powered video sensors need to perform power-
aware processing to maximize the information conveyed. This 
problem can be addressed from various points of views: on the 
architecture level such as designing low power processor 
architecture, multi-cores with multiple hardware execution 
engines, media instruction sets [1-3]; developing ASIC to 
hardware-accelerate the encoder; employing multi-threaded 
software, and a combination of these techniques [4]. Another 

approach is to efficiently allocate the computational resources to 
the key modules of the encoder based on the perceptual 
relevance of the regions in the frame [5].   
 
In this paper we present a Region of Interest (ROI) based 
resource allocation at the encoder on similar lines as proposed 
by Yang et al in [5], with a more generic content and motion 
adaptive power efficient encoder parameter selection framework 
on H.264. The paper is henceforth structured in the following 
manner. Section 2 covers the complexity analysis of the key 
functional blocks of encoder, Section 3 covers our adaptive 
parameter set selection process, Section 4 describes the 
experimental setup and simulation results and we draw 
conclusion from our work in Section 5. 
 

2. COMPLEXITY ANALYSIS 
 
In this section we first analyze the complexity of the key 
functional blocks of the encoder. In particular we study the non-
normative part of the encoder, Motion Estimation (ME) and 
Rate Distortion (RD) optimization, which are the key 
enhancement modules incorporated in the standard, but are also 
heavy on processor cycle consumption. Based on the analysis, 
we then define a series of coding modes; each corresponding to 
a different level of complexity which can be used for ROI based 
resource allocation. 
 
2.1. Motion Estimation Profiling 
H.264 performs motion estimation at different pixel resolution 
(full, half and quarter pixel accuracy) and can have multiple 
reference frames when encoding an inter frame. The distortion 
metric used in ME and the search range are also some of the key 
elements in ME. The computational complexity of the ME 
process can be described as below.  
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where NFullpel and Nsubpel are integer pel and fraction pel full 
search ME computations (an upper bound, in practice sub-pel 
search is done at best full search pel location) for a MB of size 
NXN, with search range SR and reference blocks NRef . NMEmetric 

is the ME metric computation cost, Ninterp is the interpolation 
cost for a MB in fraction pel ME. In H.264, the interpolation 
filter uses 6 tap filter for half pel and 2 tap filter for quarter pel 
ME. 
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We analyzed the effect of the above parameter set on various 
test sequences. As an example the results for one test sequence 
(Foreman_CIF with baseline profile) are detailed below. Fig. 1 
illustrates the complexity of encoding and the quality as a 
function of the number of reference frames. It is found that for 
sequences with moderate motion such as the Foreman sequence, 
increasing the number of reference frames will not yield 
significant quality improvement. However, the average encoding 
time per inter frame almost linearly increases with the number of 
reference frames, which is also expected from Eqn. (1). 
 

Encoder Complexity based on Number of 
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Fig 1. ME Reference frames selection complexity on a test 
Foreman CIF sequence (15fps, constant QP = 24). The Quality 
metric is PSNR Y (dB) and the Complexity metric shown is 
average encoding time per frame. 
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Fig 2. ME Distortion Metric Selection complexity on Foreman 
CIF sequence (15fps, constant QP = 24). 
 
The distortion metric used in ME for block matching can be 
SAD, SSE or Hadamard SAD. We observe from Fig. 2 that 
Hadamard SAD yields the best matches in ME and hence the 
best overall quality (PSNR values). The difference in encoding 
time with each of the ME metrics can be captured in NMEmetric (1 
ADD for SAD, 1MUL & 1 ADD for SSE).  Since ME can take up 
to 60% of encoding time, considerable research has been done 
in this area and some are presented in articles [6-8].  
 
2.2 RD Optimization Profiling 

H.264 performs RD optimization with multiple coding modes 
for Intra and Inter frames. The mode selection algorithm 
computes the best possible mode (M*) from a set of partition 
modes M, minimizing the overall cost using Lagrangian method 
using the relation given below. 
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 This process includes ME, estimation of rate (DCT-
quantization, entropy coding and Inverse quantization, IDCT) 
for all possible partition modes and requires high computational 
power. The quality of the encoded sequence depends on whether 
this optimization is done or not and is evident from the PSNR 
gains in Fig 3. We found 5-10% increase in coding complexity 
with RD optimization enabled. There are many research works 
published to expedite the mode selection process and a few are 
listed in [9, 10].  

Encoder Complexity with RD Optimization
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Fig 3. RD optimization complexity chart on Foreman CIF Test 
sequence. 
 

We partition the modes into the following mode sets in the 
increasing order of complexity with ModeSet 0 being the least 
complex set. The grouping is made take into account the overall 
computation time in ME with a particular mode selected. Based 
on video content, the percentage of modes selected from each 
ModeSet varies. For example, in smooth regions ModeSet 0 will 
be used and in foreground regions where there are objects 
ModeSet 1 and 2 will be predominantly used. 
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3. ROI BASED ENCODER PARAMETER 
SELECTION 

 

In our previous work on Region Of Interest (ROI) based rate 
control [11], we have proposed an algorithm that segments the 
video into ROI and background based on motion analysis. ROI 
segmentation can also be used to efficiently allocate 
computational resources to region of importance and hence 
minimize the complexities in the static background regions, as 
done in [5]. In the following, we exploit this idea by combining 
ROI-based encoding with a power scalable encoding parameter 
set selection process. 
 

3.1 Adaptive Parameter Selection         

Our ROI algorithm combines macro-blocks (MB) based on 
Motion Vector and Distortion into foreground and background 
regions and classifies them in different slice groups using the 
explicit mode in Flexible Macroblock Ordering (FMO). The 
slices so generated are independently decodable and can be 

926



efficiently coded with ROI-based rate control [11]. Also, we can 
allocate more computational resources for encoding slice groups 
which are critical such as ROI information. The static 
background slice group which has little or no motion can be 
coded with a restrictive parameter set to speed up the encoding 
process. We describe two such implementations below. 
 
3.1.1. Parameter selection based on ROI 

From our analysis in Section 2, we identify the encoder 
parameter sets from the statistics obtained from a database of 
video sequences. While coding the background slice group, we 
pick a subset of block partition modes for RD optimization from 
Eqn. (3) which are less expensive computationally and exclude 
those coding modes which are complex from the coding 
decision. Since background slice is with less or no motion, 
excluding smaller partition modes (ModeSet 2) will not affect 
quality much. Further we can restrict the search range for ME to 
a smaller search space. The slice group with ROI is still coded 
with all partition modes and higher search range to maintain 
good perceptual quality.  
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Fig 4. Plot showing the performance of power scaled encoding 
(a) RD Power Performance curve, (b) Computational savings, 
for Foreman CIF sequence. 
 
3.1.2. Power scaled parameter selection 

To achieve power scalable encoding, the computational 
resources must be allocated based on available battery power. In 
addition, we should also consider the current frame complexity 
while allocating the resources. We use two factors, Frame 
Complexity factor (FC) derived from PSNR drop ratios [11] and 
power factor (PF) (% battery remaining) to modulate the 
encoder parameter set as below.  
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When the battery reaches critical state (<33% remaining), we 
reduce the resolution of MV (for Non ROI slice) by performing 
ME at integer pel accuracy. The distortion measure in ROI 
classification will still recover the regions in the background 
which might potentially get degraded due to the compromise 
made above.  
 

  
         25% power: 32.38 dB             50% power: 32.59 dB  

     
        75% power: 32.96 dB                100% power: 33.04 dB 
Fig 5. Subjective quality at different power levels for Foreman 
CIF sequence frame 93 at 128 Kbps. 
 

4. EXPERIMENTAL RESULTS 
 
We have conducted simulations based on the JM 12.4 
H.264/AVC encoder. The encoder is setup in the baseline 
profile with two explicit slice grouped FMO and CAVLC 
entropy coding. The number of reference frames is set to 5, and 
the search range is 16, with RD optimization and loop filter 
enabled, and fast full search ME method employed. All the test 
video sequences are of CIF resolution with 4:2:0 sub-sampling 
mode and encoding rate is 15 fps.  
Fig. 4 shows a plot of Rate Distortion Power (RDP) 
performance curve and computational savings (in terms of ME 
time) in power scaled encoding mode for the Foreman sequence. 
We observe from the plots that there is a tradeoff in quality and 
power savings. The subjective quality is still maintained due to 
our ROI based allocation process as observed from Figure 5. We 
conducted simulations in both Constant Bit Rate (CBR) and 
Variable Bit Rate (VBR) modes for several other sequences and 
the results are tabulated in Tables 1 and 2 respectively. The 
“Fixed” part is without ROI allocation and the “Adaptive” part 
is with ROI based allocation at 100% power. We can see that in 
sequences such as Hall and Foreman, where the activity is 
localized, the ROI classification yields the best performance 
which can be seen in the reduction in the encoding time 
(translating into computation power saving). On the contrary in 
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sequences such as coastguard, bus and mobile which have 
global and/or camera motion, the total computational saving is 
lower, but still significant at around 50%.  The instantaneous 
plots of PSNR at various power levels shown in Fig. 6 and 7 
confirm a smooth variation of quality in the encoded sequence. 
 

5. CONCLUSIONS 
 

In this paper we have presented system level encoder complexity 
reduction by adaptively selecting the parameter sets based on 
video contents and available battery power. Simulation results 
demonstrate power-scaled encoding efficiently allocates the 
computational resources with ROI quality preserved. The 
performance boost gained might be lower in real time video 
encoders which use fast ME algorithms and are developed on 
pipelined DSP with multithreaded software and hardware 
accelerators which will be a future direction to probe further on 
this topic.  However, our approach can still be used for power-
optimizing the battery-powered wireless devices for real time 
video capture and streaming applications.  
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Fig 6. PSNR variation plot for Stefan CIF sequence at different power 
levels. Bit rate 256 Kbps, 15 fps with 3 GOPS. 
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Fig 7. PSNR variation plot for Foreman CIF sequence at 
different power levels. Bit rate 128 Kbps, 15 fps with 3 GOPS. 
 
Table 1. CBR simulation results. (Rate: 256 Kbps, 100 frames, 15fps) 

 
Table 2. Variable Bit Rate (VBR) simulation results. (QP_I=24, 
QP_P=28, 100 frames, 15fps, CIF 4:2:0) 

 

Sequence Encoding Time (s) PSNR (Y) dB 

 Fixed Adaptive Fixed Adaptive 

Foreman 617.53 332.2 37.65 37.32 
Stephan 560 420.8 31.71 31.22 
Coastguard 624.55 315.55 30.43 30.21 

Mobile 621.35 338.06 29.62 29.27 

Hall 621.68 356.37 39.39 39.3 
Bus 628.56 392.71 30.51 30.14 

Sequence Encoding Time (s) PSNR (Y) dB 

 Fixed Adaptive Fixed  Adaptive 

Foreman 636 308.71 38 37.99 
Stephan 641.14 359.55 36.78 36.73 

Coastguard 650.06 396.83 35.79 35.76 

Mobile 712.59 442.77 35.68 35.65 

Hall 598.55 309.53 38.68 38.66 

Bus 676.5 456.75 36.15 36.11 
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