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ABSTRACT

Distributed Video Coding (DVC) has been proposed as a new video
coding paradigm to deal with lossy source coding using side infor-
mation to exploit the statistics at the decoder to reduce computa-
tional demands at the encoder. A virtual channel noise model is
utilized at the decoder to estimate the noise distribution between the
side information frame and the original frame. This is one of the
most important aspects influencing the coding performance of DVC.
Noise models with different granularity have been proposed. In this
paper, an improved noise model for transform domain Wyner-Ziv
video coding is proposed, which utilizes cross-band correlation to
estimate the Laplacian parameters more accurately. Experimental
results show that the proposed noise model can improve the Rate-
Distortion (RD) performance.

Index Terms— DVC, virtual channel, noise model, cross-band
correlation

1. INTRODUCTION
Distributed Video Coding (DVC) [1] aims at avoiding complex mo-
tion estimation and compensation at the encoder and only explore
the video statistics at the decoder side. According to the Slepian-
Wolf theorem [2], it is possible to achieve the same rate as a joint
encoding system by independent encoding but joint decoding of two
statistically dependent signals. The Wyner-Ziv theorem [3] extends
the Slepian-Wolf theorem to a lossy case, which becomes the key
theoretical basis of DVC. One approach to DVC is to use a feedback
channel based transform domain Wyner-Ziv video coding scheme.
This was first proposed by the Stanford group in [4], then improved
by the DISCOVER group (DIStributed COding for Video sER-vices)
[5]. The DISCOVER codec improved coding performance by in-
cluding a better side information generation scheme [6], an optimal
reconstruction [7] and a realistic online noise model [8] at the de-
coder side. The coding efficiency of DVC is highly dependent on
the error correcting capability of the channel code. A more accu-
rate virtual channel noise model between the side information frame
and the original frame will lead to improved channel coding perfor-
mance.

A Laplacian distribution is usually utilized to model the differ-
ence of the transformed coefficients between the original frame and
the side information in DVC. Accurate estimation of the Laplacian
parameter is a complex task in DVC, because the side information
frame is not reconstructed at the encoder side and the original frame
is not available at the decoder side. Recently, different granular-
ity online models [8][9] have been proposed to estimate the Lapla-
cian distribution, i.e. from band (frame) level to coefficient (pixel)
level for transform (pixel) domain Wyner-Ziv video coding. The
results indicate that including finer granularity in the noise model
improves the Rate-Distortion (RD) performance. In order to further

improve the RD performance of transform domain Wyner-Ziv video
coding, an improved noise model with a more accurate estimation
of the Laplacian parameters is proposed. In the proposed model, a
category map is generated based on previous successfully decoded
bands, which are utilized to divide transformed coefficients of the
current band into two categories. Different parameter estimators are
applied for these two categories to locally calculate the Laplacian pa-
rameters. Finally, each transformed coefficient is assigned a Lapla-
cian parameter based on its corresponding category and reliability.

The rest of this paper is organized as follows: Section 2 briefly
describes the architecture of transform domain Wyner-Ziv video
coding. In Section 3, noise models with different granularity are
first described. Thereafter the proposed model is introduced. Test
conditions and results are presented in Section 4.

2. ARCHITECTURE OF TRANSFORM DOMAIN
WYNER-ZIV VIDEO CODING

The architecture of a transform domain Wyner-Ziv video codec
[4][5] is depicted in Fig. 1. A fixed Group of Pictures (GOP=2) is
adopted. The video sequence is first split into odd (key) frames and
even (Wyner-Ziv) frames. The odd frames are intra coded by using
a conventional video coding like H.264/AVC while the even frames
are Wyner-Ziv coded.

In the encoder, Wyner-Ziv frames are partitioned into non-
overlapped 4x4 blocks and an integer discrete cosine transform
(DCT) is applied on each of these. The transform coefficients within
a given band bk, k ∈ {0...15}, are grouped together and then quan-
tized [4]. DC coefficients and AC coefficients are uniformly scalar
quantized and dead zone quantized, respectively. After quantiza-
tion, the coefficients are binarized, each bitplane is transmitted to
a rate-compatible LDPC accumulate encoder [10] starting from the
most significant bitplane. For each encoded bitplane, the corre-
sponding accumulated syndrome is stored in a buffer together with
an 8-bit Cyclic Redundancy Check (CRC). CRC is used to aid the
decoder detecting the convergence. The amount of bits to be trans-
mitted depends on the requests from the decoder through a feedback
channel.

In the decoder, an Overlapped Block Motion Compensation
(OBMC) based interpolation algorithm [11] is adopted to create a
side information frame Y2i and a motion estimated residual frame
RME based on two intra coded frames X2i−1 and X2i+1. Y2i

and RME undergo the same 4x4 integer DCT to obtain coefficients
CY2i and CRME . CRME is utilized to model the noise distribu-
tion between corresponding DCT bands of the side information and
Wyner-Ziv frames (i.e. CY2i and CX2i ). By using the noise distribu-
tion obtained, coefficient values of the side information frame CY2i

and the previous successfully decoded bitplanes, soft information
(conditional bit probabilities Pcond) for each bitplane is estimated.
With a given soft-input information Pcond, the LDPC decoder starts
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to process the corresponding bitplanes to correct the bit errors.
Convergence is tested based on the 8-bit CRC and the Hamming
distance between the received syndrome and the one obtained by
the decoded bitplane: If the Hamming distance is different from
zero after a certain amount of iterations, the LDPC decoder requests
more accumulated syndrome bits from the encoder buffer via the
feedback channel. If the Hamming distance is equal to zero, then
the 8-bit CRC sum is requested from the buffer to verify successful
decoding. A decoded bitplane with correct CRC sum is sent to a
reconstruction module, a bitplane with incorrect CRC sum requests
more accumulated syndrome bits from the encoder buffer to correct
the existing bit errors until a low error probability is guaranteed.

Fig. 1. Diagram of transform domain Wyner-Ziv video codec archi-
tecture

3. ONLINE NOISE MODELS

In order to take advantage of side information for decoding, the
Wyner-Ziv decoder needs reliable information describing the noise
distribution between the original frame and the side information
frame RXY . As a realistic solution in [8][9], a motion compen-
sated residual RME between two key frames X2i−1 and X2i+1 is
used (instead of an unrealistic offline residual RXY ) to estimate the
Laplacian distribution parameter at the decoder side. Based on the
work in [11], OBMC based side information generation is applied,
therefore the motion compensated residual RME is obtained by:

RME(m0, n0) = Σk
j=0ωjR̂j/Σk

j=0ωj (1)

R̂j = (X2i−1(m0 + Δmj , n0 + Δnj) −
X2i+1(m0 − Δmj , n0 − Δnj)) (2)

where (m0, n0) is the position within the current block, (Δmj , Δnj)
is the motion vector of the neighboring block j (Blockj) and k de-
notes the number of the neighboring blocks. ωj is the weight of
Blockj obtained by:

ωj = (Ej [(X2i−1(mj + Δmj , nj + Δnj)

−X2i+1(mj − Δmj , nj − Δnj))
2])−1 (3)

where Ej is the expected value over (mj , nj) ∈ Blockj .
Different granularity online noise models for pixel domain and

transform domain Wyner-Ziv video coding are discussed in [8][9].
In the following sub-sections, the band level and coefficient level
noise models for transform domain Wyner-Ziv video coding are de-
scribed first, then the proposed noise model is introduced.

3.1. Band Level
With the motion compensated residual RME , 16 bands of trans-

formed residual coefficients C
bk
RME

, bk ∈ {0...15} are obtained af-
ter the 4x4 DCT transform. For a given band bk, different Laplacian

parameters α
|σ|
bk

are used to online model the distribution between

transformed coefficients Cbk
X2i

and Cbk
Y2i

:

f(C
bk
X2i

− C
bk
Y2i

) ≈ α
|σ|
bk

2
e
−α

|σ|
bk

|Cbk
RME

|
(4)

α
|σ|
bk

=
√

2/σ2
|bk|, σ

2
|bk| = E(|Cbk

RME
|2) − E(|Cbk

RME
|)2 (5)

where σ2
|bk| is the variance of the absolute value of the transformed

motion compensated residual (|Cbk
RME

|) within band bk. The ab-
solute value is chosen for Laplacian parameter estimation, since it

is observed that the distribution with parameter α
|σ|
bk

is in general

closer to the histogram of the actual residual C
bk
RXY

(= C
bk
X2i

−C
bk
Y2i

)
compared with the distribution with the parameter ασ

bk
obtained by

residual (C
bk
RME

) through experiments [8] (See also Fig. 2).

3.2. Coefficient Level
In the band level noise model, the same Laplacian parameter α

|σ|
bk

is
utilized for all the coefficients within band bk. The spatial variation
between different blocks is not explored, thus a coefficients level
noise model (c1) is proposed in [8] to exploit spatial variation.

αc1
bk

(u, v) =

{
α
|σ|
bk

, if D(u, v)2 ≤ σ2
|bk|√

2/D(u, v)2, if D(u, v)2 > σ2
|bk|

(6)

D(u, v) = C
bk
RME

(u, v) − E(|Cbk
RME

|) (7)

where αc1
bk

(u, v) represents the estimated Laplacian parameter for

the coefficient located at (u, v) within band bk. α
|σ|
bk

and σ2
|bk| are

estimates of the Laplacian parameter and the variance at band level.

E(|Cbk
RME

|) represents the average absolute value of coefficients in

band bk. C
bk
RME

(u, v) is the coefficients value at position (u, v)
within band bk. This coefficient level noise model divides coeffi-
cients into two categories by comparing D2 and the variance σ2

|bk|.
If D2 is smaller than the variance, the band level Laplacian pa-

rameter α
|σ|
bk

is applied. Otherwise, the coefficient level parameter√
2/D(u, v)2 is assigned [8].

3.3. Proposed noise model
A pixel level noise model is proposed in [9] for pixel domain Wyner-
Ziv video coding. This work is here extended to a coefficient level
noise model (c2) for transform domain Wyner-Ziv video coding
which weights band level and coefficient level statistics.

αc2
bk

(u, v) =
β · E(|Cbk

RME
|) · α|σ|

bk

(β − 1) · |Cbk
RME

(u, v)| + E(|Cbk
RME

|) (8)

where parameter β determines the amplitude of the deviations of

αc2
bk

(u, v) from α
|σ|
bk

. β = 2 was chosen experimentally [9]. Gener-
ally, this noise model assigns Laplacian parameters adaptively based
on the absolute magnitude of the transformed motion compensated

residual. The larger the absolute transformed residual |Cbk
RME

(u, v)|
is, the less reliable it is, and therefore a smaller Laplacian parameter
αbk(u, v) is assigned.

As in [8][9], the variance σ2
|bk| is utilized to estimate the Lapla-

cian parameter at band level (Eq. 5) which in turn influences the
estimated coefficient level (Eqs. 6 and 8). The maximum likehood
estimator can also be used to estimate the Laplacian parameter:

α
|b|
bk

= ((
∑

||Cbk
RME

| − E(|Cbk
RME

|)|)/N)−1
(9)

Assuming a Laplacian distribution, these two different estimators
(Eqs. 5 and 9) should give the same parameter value. However,

as shown in Fig. 2, the experiments indicate that α
|b|
bk

is generally

larger than α
|σ|
bk

. The histogram of the actual residual Cbk
RXY

is more
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peaked and has longer tails than the assumed Laplacian distribution.

α
|b|
bk

is closer to the histogram close to zero while the α
|σ|
bk

is closer
at the high values. Therefore it is reasonable to classify coefficients

into two categories and apply the estimators α
|b|
bk

(Eq. 5) and α
|σ|
bk

(Eq. 9) for each category, respectively. Further, these estimators will
be based on the coefficients within the respective category.
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Fig. 2. Histogram of the actual residual C0
RXY

= C0
X2i

− C0
Y2i

and the estimated distributions with different estimators (DC coeffi-
cients, frame 22 of Foreman). Kullback-Leibler distances (KL) are
calculated to compare the distance between the true distribution and
modeling distribution.

The coefficient level noise model proposed in [8] classifies co-
efficients by comparing D(u, v)2 and the variance σ2

|bk| as shown in

Eq. 6. However, this calculation is only based on C
bk
RME

, which may

be unreliable in some regions. Only using Cbk
RME

(Eq. 6) may lead
to inaccurate local parameter calculation. The correlation between
classifications of different bands is tested in Fig. 3(a) based on com-

paring D(u, v)2 and σ2
|bk| of the actual residual Cbk

RXY
.Therefore

cross-band correlation can be utilized.

Since the Wyner-Ziv frames can be decoded successively band
by band, after successfully decoding one (lower frequency) band bk,
an unfinished decoded frame (Z) can be reconstructed. By calcu-

lating the coefficients difference between C
bk
Z and C

bk
Y2i

, an updated

residual C
bk
RZY

in band bk is obtained, which is closer to the actual

residual C
bk
RXY

than the motion compensated residual C
bk
RME

. The

σ2
|bk| and D(u, v)2 in Eqs. 5 and 7 are recalculated based on the up-

dated residual C
bk
RZY

, the classification map of band bk is obtained
as:

mapout
bk

= {(u, v)|D(u, v)2 > σ2
|bk|} (10)

mapin
bk

= {(u, v)|D(u, v)2 ≤ σ2
|bk|} (11)

Due to the existing cross-band correlation, classification map
of band bk can be utilized to estimate the classification of the next
(higher frequency) band bl, l > k. The classification estimation fol-
lows the decoding order as shown in Fig. 3(b). For instance, af-
ter the first band is successfully decoded, the classification map of
band 1 (mapout

1 ,mapin
1 ) is obtained as described in Eqs. 10 and 11.

The classification maps of band 2 and band 3 are simply estimated
by copying the map of the neighboring band 1, i.e. mapout

3 =
mapout

2 = mapout
1 and mapin

3 = mapin
2 = mapin

1 . Similarly, the
classification map of band 5 is estimated by using band 2 and band
3 by mapout

5 = mapout
2 ∪ mapout

3 and mapin
5 = mapin

2 ∪ mapin
3

etc. With the estimated classification, α
|b|
bk

and α
|σ|
bk

can be calculated

within the coefficient sets mapin
bk

and mapout
bk

, respectively.

(a)

(b)
Fig. 3. (a) Coefficient classification within different bands tested on

the actual residual C
bk
RXY

(Frame 22 of Foreman). (b) The classi-
fication estimation from lower frequency band to higher frequency
band

α
|b|
mapin

bk

= ((
∑

||Cmapin
bk

RME
| − E(|Cmapin

bk
RME

|)|)/N)−1
(12)

α
|σ|
mapout

bk

=

√
2/(E(|Cmapout

bk
RME

|2) − E(|Cmapout
bk

RME
|)2) (13)

In order to combine the advantages of the two coefficient level
noise models described in the subsections 3.2 and 3.3, the Laplacian
parameters for lower frequency bands and higher frequency bands

are assigned differently. Let αc2
bk

[(u, v)|Cmap•
bk

RME
, α

|σ|
bk

] denote the

function in Eq. 8. For coefficients C
bk
RME

, bk ∈ {0, 1, 2},

αbk (u,v) =

⎧⎪⎨
⎪⎩

αc2
bk

[(u, v)|Cmapin
bk

RME
, α

|b|
mapin

bk

] (u, v) ∈ mapin
bk

αc2
bk

[(u, v)|Cmapout
bk

RME
, α

|σ|
mapout

bk

] (u, v) ∈ mapout
bk

(14)

For coefficients Cbk
RME

, bk ∈ {3...15},

αbk (u,v) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α
|σ|
mapout

bk

if
√

2/D(u, v)2 ≥ α
|σ|
mapout

bk∪(u, v) ∈ mapout
bk

α
|b|
mapin

bk

if
√

2/D(u, v)2 ≥ α
|b|
mapin

bk∪(u, v) ∈ mapin
bk√

2/D(u, v)2, otherwise

(15)

4. EXPERIMENTAL RESULTS
The following test conditions are used to obtain the RD perfor-
mance results: The test sequences (available on [5]) are 149 frames
of ”Foreman”, ”Soccer”, ”Coast-guard” and ”Hallmonitor” at 15
frames per second (fps). The most common GOP length of 2 is
used. The key frames are encoded by H.264/AVC intra and the QPs
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Fig. 4. RD comparison for difference sequences

are chosen so that the average PSNR of Wyner-Ziv frames are simi-
lar to the quality of key frames as in [5]. Overlapped Block Motion
Compensation (OBMC) based side information generation [11] with
half-pixel accuracy is utilized. The RD results are evaluated by the
average for the luminance components of key frames and Wyner-Ziv
frames. RD performance results of transform domain Wyner-Ziv
video coding with different noise models are compared.

The experimental results are depicted in Fig 4. The perfor-
mance of the DISCOVER executable codec [5]-[8] is depicted for
comparison. The performance of H.264/AVC intra coding and
H.264/AVC frame difference coding (i.e. No motion estimation
with IBI GOP structure) are also included. The band level noise
model with side information generation [11] is seen as a baseline.
The coefficient level noise models achieve better RD performance
than band level noise model. Compared with the coefficient level
model [8] (Eq. 6) employed in the DISCOVER codec, the weighted
coefficient level model (Eq. 8) gives better RD performance results
for sequences ”Foreman”, ”Soccer” and ”Coast-guard”, but worse
RD performance for sequence ”Hallmonitor”. The proposed noise
model achieves better RD performance than all the other noise mod-
els. Compared with the coefficient level noise models, the proposed
noise model is more robust and it improves the RD performance for
high bit-rates up to 0.5 dB.

5. CONCLUSION

In this paper, an improved virtual channel noise model is proposed
for transformed domain Wyner-Ziv video coding. It classifies the
transformed coefficients into two categories by using the cross-band
correlations, applies different estimators to locally calculate the
Laplacian parameters and thus adaptively assigns a parameter value
for each coefficient. Experimental results show that the proposed
noise model can improve the coding efficiency of transformed do-
main Wyner-Ziv video coding up to 0.5 dB compared with the other
noise models.
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