
VIDEO CODING USING VARIABLE BLOCK-SIZE SPATIALLY VARYING TRANSFORMS

Cixun Zhang*, Kemal Ugur§, Jani Lainema§, Moncef Gabbouj*

*Tampere University of Technology, Tampere, Finland
§Nokia Research Center, Tampere, Finland

ABSTRACT

In our previous work, we introduced Spatially Varying
Transforms (SVT) for video coding, where the location of
the transform block within the macroblock is not fixed but
varying. In this paper, we extend this concept and present a
novel method, called Variable Block-size Spatially Varying
Transforms (VBSVT). VBSVT utilizes Variable Block-size
Transforms (VBT) in the SVT framework, and is shown to
be more preferable for coding prediction error with different
characteristics than fixed block-size SVT and also the stan-
dard methods that use fixed or adaptive block sizes at fixed
spatial locations. In addition, VBSVT has similar decoding
complexity with fixed block-size SVT and lower decoding
complexity compared to standard methods as only a portion
of the prediction error needs to be decoded. Experimental
results show that, VBSVT achieves 4.1% gain over
H.264/AVC on average over a wide range of test set. Gains
become more significant at high quality levels and go up to
13.5%, which makes the proposed algorithm very suitable
for future video coding solutions focusing on high fidelity
applications.

Index Terms— Video coding, H.264/AVC, Variable
Block-size Transform (VBT), Spatially Varying Transform
(SVT)

1. INTRODUCTION

H.264/AVC is the latest international video coding standard
and it provides up to 50% gain in coding efficiency com-
pared to previous standards. However, this is achieved at the
cost of both increased encoding and decoding complexity.
Additional complexity of H.264/AVC becomes an issue in
resource constrained applications, such as mobile video ser-
vices (mobile TV, video telephony etc) and handheld con-
sumer electronics (camcorders, digital still cameras etc). On
the other hand, as display resolutions and available band-
width/storage increases rapidly, High-Definition (HD) video
is becoming more popular and commonly used, making the
implementation of video codecs even more challenging.

To better satisfy the requirements of increased usage of
HD video in resource constrained applications, two key is-
sues should be addressed: coding efficiency and implemen-

tation complexity. In our previous paper [1], we proposed a
novel algorithm, named as Spatially Varying Transform
(SVT), which provides coding efficiency gains over
H.264/AVC while lowering the decoding complexity. The
motivations leading to design of SVT are two-fold:

1. The block based transform design in most exist-
ing video coding standards does not adapt the
underlying transform to the structure of the pre-
diction error to be coded. In this case, the coding
efficiency decreases.

2. Coding the entire prediction error signal may not
be the best in terms of rate distortion tradeoff
because the prediction error signal may contain
noise which contributes little to quality but re-
quires additional bits to code.

In [1], we used a single 8x8 transform block with varying
spatial location within the 16x16 macroblock to code the
prediction error. This was shown to improve the coding effi-
ciency of standard video coders, such as H.264/AVC, as it
localizes the prediction error better. However, as the block
size of SVT is fixed to 8x8, certain macroblocks with pre-
diction errors of different characteristics cannot be effi-
ciently coded. In this paper, we extend the concept to Vari-
able Block-size Spatially Varying Transforms (VBSVT) by
using Variable Block-size Transforms (VBT) within the
SVT framework. More specifically, in addition to the single
8x8 transform block as used in [1], we use two additional
transform blocks with different horizontal and vertical sizes,
and select the transform block size adaptively. By adapting
both the size of the transform block and its spatial location,
the prediction error is better localized and the underlying
correlations are better exploited. In addition, as the number
of transform blocks used to code the prediction error is re-
duced, the decoding complexity is reduced. Experimental
results show that, when implemented to H.264/AVC, pro-
posed algorithm achieves 4.1% gain on average over a wide
range of test sequences. Gains become more significant at
high quality levels and go up to 13.5%, which makes the
proposed algorithm very suitable for future video coding
solutions focusing on high fidelity applications.

This paper is organized as follows. A brief review of
SVT is presented in section 2. Section 3 introduces VBSVT
and presents a detailed analysis. Experimental results are
given in section 4 and section 5 concludes the paper.

905978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

2. SPATIALLY VARYING TRANSFORM

Transform coding is widely used in video coding standards
to decorrelate the prediction error and achieve increased
compression rates. Typically, transform coding is applied to
prediction error at fixed locations. However, this has several
drawbacks that may hurt the coding efficiency and decrease
visual quality. First of all, if the localized prediction error at
fixed locations has a structure that is not suitable for the
underlying transform, many high frequency coefficients will
be generated in the transform domain and they need many
bits to code. In this situation, the coding efficiency de-
creases. Moreover, notorious visual artifacts such as ringing
may appear when these high frequency coefficients get
quantized.

In our previous work [1], SVT was proposed to reduce
these drawbacks of transform coding. The main idea of SVT
is that the transform coding is not restricted to be at fixed
locations, but instead can be applied at any location accord-
ing to the characteristics of the prediction error. With this
flexibility, we are also able to achieve coding efficiency im-
provement by selecting and coding the best portion of the
prediction error in terms of rate distortion tradeoff. Gener-
ally this can be done as follows. We only code a sub-region
in a certain residual region after prediction. The sub-region
is found by searching inside the region according to a certain
criterion. Information of the location of the selected sub-
region inside the region is coded into the bitstream if neces-
sary. In [1], one configuration of this general idea is used: a
single 8x8 transform block is selected inside a 16x16 mac-
roblock and only this 8x8 block is coded. This is shown in
Fig. 1 below. Rate Distortion Optimization (RDO) is used to
select the best location parameter (Δx, Δy) for SVT and de-
termine whether SVT is used for coding each macroblock. It
is suggested that (Δx, Δy) be selected from the set

={(0..8,0), (0..8,8), (0,1..7), (8,1..7)} which has 32 candi-
dates. This set is chosen after performing many simulations
and studying the statistical distributions of (Δx, Δy) at dif-
ferent bitrates and sequences. Reader is referred to [1] for
more details. As in [1], in this paper, notation x..y is used to
specify a range of integer values starting from x to y inclu-
sive, with x, y being integer numbers.

Fig.1 Illustration of 8x8 spatially varying transform

3. VARIABLE BLOCK-SIZE SPATIALLY VARYING
TRANSFORMS

It is well established in video coding community that VBT
can improve the coding efficiency [2]. Thus it is reasonable
to expect improved performance by extending the fixed
block-size SVT used in our previous paper [1] to cover vari-
able block-size. In the following subsections, we will first
discuss about the selection of different block-size SVT and
after that we present the details of VBSVT.

3.1. Different block-size spatially varying transforms

Different block-size transform can be used within the SVT
framework. For example, different from the 8x8 SVT used
in our previous study [1], we can use 16x4 SVT and 4x16
SVT (we denote this as 16x4+4x16 SVT in the rest of the
paper), which are illustrated in Fig. 2. As shown in the fig-
ure, we select and code one 16x4/4x16 block inside a 16x16
macroblock with a corresponding 16x4/4x16 transform
when using 16x4/4x16 SVT respectively. Considering both
of them as a whole, the location parameter of the selected
16x4/4x16 block can be represented as (shape, Δy/Δx)
which can be selected from the set ={(0..1, 0..12)} where
shape=0 means 16x4 block is selected and shape=1 means
4x16 block is selected. There are in total 26 location pa-
rameter candidates and statistics show that it needs 4.61 bit
on average, for all the test sequences we use in our experi-
ments, to code the index of selected location parameter in
Huffman coding. For simplicity, we use 5-bit fixed length
code instead. RDO is used to select the best location pa-
rameter (shape, Δy/Δx) for SVT and determine if SVT is
used for coding each macroblock.

Fig.2 Illustration of 16x4 and 4x16 spatially varying transform
For the selected 16x4/4x16 block, 16x4/4x16 transform

is used accordingly. In general, the separable forward and
inverse 2-D transform of a 2-D signal can be written as

T
hv TXTC ⋅⋅= , (1)

h
T

vr TCTX ⋅⋅= (2)
respectively, where X denotes a matrix representing MxN
pixel block of N pixels horizontally and M pixels vertically,
C is the transform coefficient matrix, and Xr denotes a ma-
trix representing reconstructed signal block. Tv and Th are
the MxM and NxN transform kernels in vertical and hori-

906

zontal direction, respectively. The superscript T denotes
matrix transposition. For 16x4 and 4x16 transforms, a 4x4
and a 16x16 transform kernel need to be specified. In this
paper, we use the 4x4 transform kernel in H.264/AVC [3]
and the 16x16 transform kernel in [4] because of its good
compatibility with H.264/AVC and low complexity. Normal
zig-zag scan (for frame based coding which is used in our
experiments) is used to represent the transform coefficients
as input symbols to the entropy coding.

Integration of 16x4+4x16 SVT into H.264/AVC frame-
work is in principal the same as that of 8x8 SVT proposed in
[1], with modifications only because of different block size
whenever needed.

Compared to 8x8 SVT in [1], the encoding complexity of
16x4+4x16 SVT proposed here is lower since there are only
26 location parameter candidates to be tested in RDO rather
than 32 for 8x8 SVT. The decoding complexity of
16x4+4x16 SVT would be similar to that of 8x8 SVT since
the main difference between them comes from different in-
verse transform and deblocking, which are not significant.

Last but not the least, we note that the reason we choose
to use 16x4+4x16 SVT is because of its good compatibility
with H.264/AVC, low complexity and good performance as
will be shown later. However, other block-size SVT can also
be used, like full or pruned 16x8+8x16 SVT with 128 or 64
coefficients coded. Directional spatially varying transforms
with a directional oriented block selected and coded with a
corresponding directional transform (e.g., [5]) can also be
used (expected to be more efficient in intra coding). Finally,
if SVT is applied to a region larger than a 16x16 macrob-
lock, its design will be also more flexible.

3.2. Variable block-size spatially varying transforms

To better code the prediction error with different characteris-
tics, VBSVT can be used instead of fixed block-size SVT. In
this paper, we study VBSVT with 8x8, 16x4 and 4x16 block
sizes. Again, RDO is used to select the best one among these
three for VBSVT and determine if VBSVT is used for cod-
ing each macroblock.

The encoding complexity of VBSVT is about the sum of
8x8 SVT and 16x4+4x16 SVT, while decoding complexity
remains similar to either 8x8 SVT or 16x4+4x16 SVT.

4. EXPERIMENTAL RESULTS

We implemented 16x4+4x16 SVT and VBSVT on KTA1.8
reference software [6] in order to evaluate their effective-
ness. The test condition is exactly the same as that used in
our previous paper for 8x8 SVT [1]. Important coding pa-
rameters used in our experiments are listed as follows:

• High Profile
• QPI=22, 27, 32, 37, QPP=QPI+1
• CAVLC is used as the entropy coding
• Frame structure is IPPP, 4 reference frames

• Motion vector search range ±64 pels, resolution ¼-pel
• RDO in the “High Complexity Mode”
• Two configurations are tested. 1) Low complexity con-

figuration: motion estimation block sizes are 16x16, 16x8,
8x16, 8x8, and only 8x8 transform is used. In this case,
when 16x4+4x16 SVT is used, only 16x4+4x16 transform is
used for macroblocks that use SVT. This represents a low
complexity codec with most effective tools for HD video
coding; 2) High complexity configuration: motion estima-
tion block sizes are 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4,
both 4x4 and 8x8 transform are used. In this case, when
16x4+4x16 SVT is used, either 4x4 or 16x4+4x16 transform
is selected for macroblocks that use SVT. This represents a
high complexity codec with full usage of the tools provided
in the standard. In both configurations, VBSVT is a combi-
nation of 8x8 SVT and 16x4+4x16 SVT. As in [1], we do
not change the motion estimation, sub-macroblock partition
decision process, even for the macroblocks that use VBSVT.

We measure the average bitrate reduction (BD-RATE)
compared to H.264/AVC according to [7] for both low
complexity and high complexity configurations. The results
are shown in Table 1 and Table 2 respectively. Results of
8x8 SVT [1] are also presented for comparison. As we can
see, 16x4+4x16 SVT performs better than 8x8 SVT while
VBSVT performs best, both in low complexity configura-
tion and high complexity configuration. VBSVT achieves on
average 4.11% (up to 6.19%) bitrate reduction in low com-
plexity configuration and on average 2.43% (up to 3.48%)
bitrate reduction in high complexity configuration, respec-
tively, compared to H.264/AVC. The gain of VBSVT is
lower in high complexity configuration, because the 4x4
transform in H.264/AVC (and smaller motion estimation
block sizes) is more efficient in certain cases.

Fig. 3 shows the R-D curves for Panslow sequence. We
note that the gain of VBSVT comes at high bitrates and can
be much more significant than the average gain over all bi-
trates reported above. This is true for most sequences we
tested. Take Panslow sequence as an example, by using the
performance evaluation tool provided in [8], we are able to
show that VBSVT achieves 13.50% and 6.90% bitrate re-
duction at 37 dB compared to H.264/AVC, in low and high
complexity configuration, respectively.

We also measure the percentage of 8x8 SVT and
16x4+4x16 SVT selected in VBSVT. The results are shown
in Table 3. We can see that in VBSVT scheme, 16x4+4x16
SVT are used generally more often than 8x8 SVT, mainly
because of its higher coding efficiency. However, 8x8 SVT
is also used in significant portion of the cases. This shows
that different block-size SVT can be suitable for different
situation and VBSVT would be a more preferable algorithm
for coding prediction error with different characteristics than
fixed block-size SVT. Fast algorithms can be used to lower
the encoding complexity (mainly due to the brute force
search in RDO) of VBSVT.

907

5. CONCLUSIONS

In this paper, we presented a novel method for video coding
that called Variable Block-size Spatially Varying Trans-
forms (VBSVT). VBSVT utilizes Variable Block-size
Transforms (VBT) within the SVT framework and is shown
to perform better than fixed block-size SVT with similar
decoding complexity. Compared to standard methods that
use fixed or adaptive block sizes at fixed spatial locations,
VBSVT improves the coding efficiency because it localizes
the prediction error better. The proposed algorithm is im-
plemented to H.264/AVC. We show that VBSVT achieves
on average 4.11% bitrate reduction in low complexity con-
figuration which represents a low complexity codec with
most effective tools for HD video coding and on average
2.43% bitrate reduction in high complexity configuration
which represents a high complexity codec with full usage of
the tools provided in the standard, respectively. The coding
efficiency is increased with lower decoding complexity be-
cause only a portion of the prediction error needs to be de-
coded. Gains become more significant at high quality levels
and go up to 13.5%, which makes the proposed algorithm
very suitable for future video coding solutions focusing on
high fidelity applications.

6. REFERENCES

[1] C. Zhang, K. Ugur, J. Lainema and M. Gabbouj, “Video coding
using spatially varying transform”, PSIVT 2009.
[2] M. Wien, “Variable block-size transforms for H.264/AVC”,
IEEE Trans. Circuits Syst. Video Technol. Vol. 13, no. 7, pp. 604-
613, Jul. 2003.
[3] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky,
“Low-complexity transform and quantization in H.264/AVC”,
IEEE Trans. Circuits Syst. Video Technol. Vol. 13, no. 7, pp. 598-
603, Jul. 2003.
[4] S. Ma and C.-C. Kuo, “High-definition video coding with su-
per-macroblocks”, SPIE Visual Communications and Image Proc-
essing, Vol. 6508, pp. 650816-1-650816-12, Jan. 2007.
[5] B. Zeng and J. Fu, “Directional discrete cosine transforms – A
new framework for image coding”, IEEE Trans. Circuits Syst.
Video Technol. Vol. 18, no. 3, pp. 305-313, March. 2008.
[6] KTA reference model 1.8 [online], available at
http://iphome.hhi.de/suehring/tml/download/KTA/
[7] G. Bjontegaard, “Calculation of average PSNR differences
between RD-curves”, VCEG Doc. VCEG-M33, March 2001.
[8] S. Pateux, J. Jung, “An excel add-in for computing Bjontegaard
metric and its evolution”, VCEG Doc. VCEG-AE07, Jan. 2007.

Table 1 Bitrate reduction compared to H.264 (Low complexity
configuration)

Sequence 8x8 SVT 16x4+4x16 SVT VBSVT
BigShips -2.87% -4.50% -4.96%
ShuttleStart -2.51% -3.25% -3.42%
City -3.30% -3.82% -4.45%
Night -2.33% -3.70% -4.12%
Optis -2.65% -3.30% -3.97%

Spincalendar -2.07% -3.13% -3.49%
Cyclists -2.14% -2.10% -2.52%
Preakness -2.34% -2.98% -3.71%
Panslow -4.59% -5.51% -6.19%
Sheriff -2.18% -3.04% -3.43%
Sailormen -2.11% -4.77% -4.94%
Average -2.64% -3.65% -4.11%

Table 2 Bitrate reduction compared to H.264 (High complexity
configuration)

Sequence 8x8 SVT 16x4+4x16 SVT VBSVT
BigShips -1.68% -2.95% -3.04%
ShuttleStart -0.91% -1.86% -1.46%
City -1.46% -1.99% -2.37%
Night -1.35% -2.54% -2.59%
Optis -1.48% -2.41% -3.04%
Spincalendar -1.46% -2.17% -2.24%
Cyclists -1.07% -1.21% -1.34%
Preakness -1.18% -1.41% -1.78%
Panslow -2.46% -3.07% -3.16%
Sheriff -1.20% -2.26% -2.26%
Sailormen -1.34% -3.74% -3.48%
Average -1.42% -2.33% -2.43%

Table 3 Percentage of 8x8 SVT and 16x4+4x16 SVT selected in
VBSVT for different sequences

Low complexity
configuration

High complexity
configuration

Sequence

8x8
SVT

16x4+4x16
SVT

8x8
SVT

16x4+4x16
SVT

BigShips 37.3% 62.7% 39.7% 60.3%
ShuttleStart 46.1% 53.9% 42.5% 57.5%
City 47.1% 52.9% 45.1% 54.9%
Night 46.8% 53.2% 43.0% 57.0%
Optis 50.2% 49.8% 47.0% 53.0%
Spincalendar 44.3% 55.7% 43.7% 56.3%
Cyclists 52.0% 48.0% 47.6% 52.4%
Preakness 47.8% 52.2% 45.7% 54.3%
Panslow 47.0% 53.0% 48.0% 52.0%
Sheriff 48.6% 51.4% 45.0% 55.0%
Sailormen 36.6% 63.4% 35.2% 64.8%
Average 45.8% 54.2% 43.9% 56.1%

Panslow

31.5
32

32.5
33

33.5
34

34.5
35

35.5
36

36.5
37

37.5
38

38.5

0 5000 10000 15000 20000
Bitrate (kbit/s)

PS
N

R
 (d

B
)

H.264 (low complexity)

H.264 (low complexity) + VBSVT

H.264 (high complexity)

H.264 (high complexity) + VBSVT

Fig.3 R-D curve for Panslow sequence

908

