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ABSTRACT 

For high definition (HD) H.264 decoding, deblocking filter 
is one of the most time-consuming modules. This paper 
proposes several vectorization approaches to speed up it on 
a single synergistic processor element (SPE) of IBM Cell 
Broadband Engine (Cell/B.E.) processor, by which great 
performance improvements are achieved. The average 
deblocking speed is 42.4 frames per second (fps) for 141 
1080p H.264 video streams. The steady-going performance 
is obtained for different streams of various contents and 
bitrates. With the vectorized deblocking filter, the new HD 
H.264 decoder is able to decode two 1080p H.264 video 
streams simultaneously on PlayStation® 3 (PS3) in real-time. 
The proposed approaches are practical on many other vector 
processor platforms, but not limited to Cell/B.E. processor. 

Index Terms HD H.264 decoder, deblocking filter, 
vectorization, IBM Cell/B.E. processor 

1. INTRODUCTION 

The H.264 standard [1] brings a new efficient video 
compression method to the multimedia industry. 
Deblocking filter is a new feature compared with the 
previous standards. It greatly enhances the subjective 
quality of the picture. Meanwhile, the complexity overhead 
is up to 6 % (access frequency) and 10 % (processing time) 
at the decoder side [2]. For HD video, it is the most time 
consuming module [3]. 

The IBM Cell/B.E. processor is a heterogeneous multi-
core processor which consists of one 64-bit PowerPC 
Processor Element (PPE) and eight SPEs. The SPEs are 
optimized for compute-intensive workloads, based on the 
single-instruction multiple-data (SIMD) architecture. These 
SPEs account for much of the computational power of the 
Cell/B.E. processor [4]. At an operating frequency of 3.2 
GHz, the eight SPEs in the first-generation Cell/B.E. chip 
can perform up to 204.8 GFLOPS.  

We implement HD H.264 decoder on Cell/B.E. to take 
advantage of its computational power, and gains excellent 

performance of simultaneously decoding two 1080p H.264 
streams in real-time on PS3 with only 6 SPEs are opened for 
use [5]. The work discussed in this paper is a part of the 
above decoder, and is critical to the end performance.   

The most effective optimization method on Cell/B.E. is 
vectorization. However, it is very difficult to parallelize the 
deblocking filter operations because there are a lot of data-
dependent branches in the boundary strength (BS) decision 
procedure. Besides, the data storage pattern stops 
parallelizing the vertical edge filtering procedure. 
Respectively, we propose a branch vectorization approach 
to eliminate those data-dependent branches for BS 
calculation and a fast vectorized macroblock (MB) rotation 
approach to get over the data storage pattern barrier.  

Section 2 introduces the branch vectorization approach. 
Section 3 introduces the vectorization of the vertical & 
horizontal edge filtering kernels, wherein the fast vectorized 
MB rotation approach is described in details. Section 4 
shows the experimental results. The conclusion is drawn in 
section 5. 

2. BRANCH VECTORIZATION IN BOUNDARY 
STRENGTH DECISION PROCEDURE 

A conditional filtering is applied to vertical or horizontal 
edge of a 4×4 block [1]. The first phase is to decide the BS. 
It is nearly impossible to parallelize the original boundary 
strength decision procedure due to the numbers of data-
dependent branches. We notice that the following 
conditions together decide the final BS:  

Table 1: Conditions for boundary strength decision. 

C1 The boundary is a slice boundary. 

C2 The boundary is between two intra coded MB. 

C3 The boundary is MB boundary. 

C4 The two sub-MBs have coefficiencies. 

C5`
The two neighboring sub-MBs are in the same reference 
picture.

C6 The two neighboring 4x4 blocks are in an 8x8 sub-MB. 

C7 The motion vector difference is greater than one pixel. 
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All the MBs are separated into two categories: the Intra 
MB and the Inter MB. For Intra MBs (C2 is true), the four 
sub-MBs on the same edge share the same BS value. The 
BS calculation follows the rule: if C1, then BS=0; if C3, then 
BS=4; else BS=3. For Inter MBs, the conditional branches 
for BS calculation can be summarized as: 
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!Ci denotes the condition when the i-th statement in Table 1 
is false. And we construct the branch vector: 
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 which means 
only one condition is true at a time. If we further construct 
the condition vectors as below: 
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the branch vector can be denoted as: 
1 4 5 6 7& & & &T C C C C C�
� � � � �� .

Only 0, 1, and 2 are valid BS values for Inter MB when the 
corresponding condition Ti is true, which is represented as 
the vector: 

2,0,1,0,1,0,0,0R �� 	
� .

The BS decision procedure for Inter MB now can be 
replaced by the vector operations through 3 steps: 
1. Construct the condition vectors iC

�
according to the 

value of Ci ; 
2. Calculate the value of T

�
 by carrying out five vector bit 

AND operations;  
3. The final BS values of the inter coded MBs should be 

derived by 
1,i i i iBS R if T where R R and T T� � � �

� � .
As the result, no matter what the conditions are, the BS 

decision procedure contains constant number of vector bit 
AND operations, and these vector operations are accelerated 
by the SPE, which leads to a much higher and more stable 
computing speed than the scalar design. 

3. VECTORIZED FILTERING KERNELS  

When BS values are decided, the filtering operation is first 
executed on the four vertical edges then on the four 
horizontal edges for each MB. Assume block P and block Q
are neighboring 4x4 blocks, and denote the pixels on the lth
row or column within these two blocks as pli and qli (before 
being filtered) respectively. The pixels standing on each 
side of the edge is in the below order: 
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 .
We use the case of strong edge filtering (BS=4) for U/V 
component as an example to explain the vetorization 
process. In this case: 
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Correspondingly, 0lq� is calculated in the same way. Denote 
the pixel vectors as:  
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then define the vector addition and numerical multiplication 
as:
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the strong edge filtering polynomial for U/V component 
could be rewritten in the vector form as: 
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For horizontal edge filtering, the iP
�

and the iQ
�

are
stored in rows and fit the vector order, so it is easy to 
perform the vetorization. For vertical edge filtering, 
obviously, rotating the MB in a two-dimension (2D) array 
before filtering is a feasible way for parallelizing the 
computations. The proposed vertical edge filtering process 
is illustrated in Figure 1, which reuses the horizontal edge 
filtering kernel with a pre-rotation (clockwise) and a post-
rotation (counter-clockwise). 

Figure 1: The proposed vertical edge filtering kernel. 
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Since there are two rotations performed for each MB, 
we propose a fast MB rotation approach to guarantee the 
end performance. 

3.1. FAST VECTORIZED MB ROTATION 

The 2D arrays, where the MBs are stored, should be rotated 
clockwise and then counter-clockwise. 

For any N N 2D array, where N is power of 2, if we 
use the common element exchanges, the complexity of the 
entire rotation is O(N2). However, by utilizing the vector 
instructions, we can introduce a fast vector rotation, whose 
complexity is O(log2N). With the vector instructions, 16 
bytes of data can be manipulated at a time.  The rotation 
steps can be represented as mappings. 

Define a N N matrix A, where N=2k and k is an 
positive integer. 
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Then the rotation consists of the following steps: 
Step 1:  f(A);
Step 2: For each 2k-1 2k-1 submatrices Aij, do f(Aij);
Step 3: Recursively execute step 1 and step 2 until the pixel 
level rotation is performed (k recursions). 

Take a clockwise rotation of an 8x8 block as the 
example which is shown in Figure 2. First of all, the 8x8 
block is divided into four 4x4 blocks at Step A. Then do the 
rotation mapping f to exchange the positions of the four 4x4 
blocks clockwise at Step B. Recursively, divide each one of 
the four 4x4 blocks into four 2x2 blocks at Step C. And 
exchange the positions of four 2x2 blocks within each 4x4 
block clockwise at Step D. The last step is to change the 
four pixels within each 2x2 block clockwise at Step E.

Figure 2: an example of fast vectorized MB rotation 
(clockwise). 

Similarly, for the counter-clockwise rotation, only f -1

needs to be defined: 
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The counter-clockwise rotation procedure is the same 
as the clockwise rotation except the rotation mapping f
should be replaced with f -1.

With the fast vectorized MB rotation approach, the 
horizontal edge filtering kernel is reused by the vertical 
edge filleting kernel, which not only takes the advantage of 
the vector acceleration power of SPE but also reduce the 
code size. Small code size is valuable for Cell/B.E. based 
application since the size of local store (LS) on SPE is 
limited to 256KB. 

4. EXPERIMENTAL RESULTS 

As the result of our implementation described above, the 
optimized deblocking filter is averagely 32 times faster than 
that of the simply optimized reference decoder JM11 [6]. 
The deblocking speed on single SPE is 42.4 fps averagely 
for 141 1080p H.264 video. We in the following tests use 
PS3 as the test platform. Further, denote deblocking filter of 
simply optimized reference decoder JM11 as JM_SO, where 
the code redundancy is removed from scalar code to make 
comparisons fairer. We note the deblocking filter of our 
decoder as Aeolus, where the proposed approaches are used. 

Comparison of Filtering Time per MB
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Figure 3: The comparison of filtering time per MB between 
JM_SO and Aeolus. 

Figure 3 shows the comparison of filtering time per 
MB between JM_SO and Aeolus. The results are the 
averages for five 1080p bitstreams, the so-called ‘filtering 
time’ covers the whole deblocking filtering process. The 
five bitstreams are encoded by x264 encoder [7] from 5 
different sequences, i.e. riverbed, rush_hour, sunflower, 
blue_sky and pedestrian_area. They are encoded at about 
10Mbps with 2 references frames selection and IPBPB 
structure, each GOP includes 15 frames. The filtering time 
of Aeolus is less than 0.003ms/MB in average, compared 
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with that of JM_SO of averagely over 0.089ms/MB, there is 
about 32 times speedup. From Figure 3, we can see that for 
different types of MBs, the filtering time of JM_SO varies 
largely while that of Aeolus is steady-going. The reason is 
that the proposed branch vectorization approach eliminates 
the conditional branches, and almost all types of MB 
execute the same computation for BS decision.

The same conclusion is drawn from Figure 4 for results 
of pedestrian_area bistreams encoded at different bitrates. 
All the Aeolus curves are gathered at the bottom. They are 
very close to each other and nearly horizontal to the bottom 
line. Meanwhile, the JM_SO curves rise when the bitrate 
increases, especially for the P_16x16, B_16x16, P_16x8 
and P_8x16. 

Comparison of Filtering Time per MB

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11
0.12

8.7 10.4 12.8 15.3 18.9

Bitrate(Mbps)

ms

P_16x16 (JM_SO) P_16x8 (JM_SO) P_8x16 (JM_SO)
P_8x8 (JM_SO) I_4x4 (JM_SO) I_16x16 (JM_SO)
B_16x16 (JM_SO) B_16x8 (JM_SO) B_8x16 (JM_SO)
B_8x8 (JM_SO) PSKIP (JM_SO) BSKIP (JM_SO)
P_16x16 (Aeolus) P_16x8 (Aeolus) P_8x16 (Aeolus)
P_8x8 (Aeolus) I_4x4 (Aeolus) I_16x16 (Aeolus)
B_16x16 (Aeolus) B_16x8 (Aeolus) B_8x16 (Aeolus)
B_8x8 (Aeolus) PSKIP (Aeolus) BSKIP (Aeolus)

Figure 4: The comparison of filtering time per MB between 
JM_SO and Aeolus at different bit rates. 

The stability makes this design valuable for a wide 
range of H.264 bitrates, so that it could be promoted to 
many different platforms and applications. 
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Figure 5: Time breakdown for deblocking filtering. 

Figure 5 shows the time breakdown of the 
vectorization process where the performance progress is 
also clearly observed. The bitstreams used here are the same 
as that used in Figure 3. Get_BS denotes boundary strength 
decision procedure; Ver_Filter denotes vertical edge 
filtering procedure with fast vectorized MB rotation 

performed; and Hor_Filter edge denotes horizontal edge 
filtering procedure. 

5. CONCLUSIONS 

This paper introduces several vectorization approaches for 
the deblocking filter of HD H.264 video decoder.  

In BS decision procedure, the data-dependent branches 
are replaced by the vector operations. The steady-going 
performance is obtained for varied contents and bit rates.  

Filtering process for a set of samples across the 
horizontal and vertical block edges is parallelized by vector 
operations. A fast vectorized MB rotation approach of low 
complexity is proposed to ensure the final performance. It 
also reduces the code size since the computation kernel can 
be reused after MB rotation.

The vectorization approaches introduced in this paper 
are very practical methods for designing the deblocking 
filter. Its effectiveness and efficiency have been solidly 
proved on IBM Cell/B.E. processor but not limited to this 
specific platform. By using single SPE of Cell/B.E. 
processor, the deblocking speed gains averagely 42.4 fps for 
141 1080p HD H.264 video streams. This number varies 
from 40 to 44 over the different streams. With the optimized 
deblocking filter, the overall decoder is able to decode two 
streams of 1080p H.264 video simultaneously in real time 
(over 33 fps) on PS3, where one Cell/B.E. processor is 
assembled and only 6 SPEs of it are opened for use. 
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