
VECTORIZED DEBLOCKING FILTER FOR HD H.264 DECODING ON CELL/B.E.

Huoding Li , Rong Yan , Xing Liu , Yu Yuan , Sheng Xu

{lihuod, yanrong, xingliu, yuanyu, xusheng}@cn.ibm.com
IBM STG Development Lab, 2F, Bldg.10, No.399, Ke Yuan Road, Zhang Jiang High Tech Park,

Shanghai 200131, P.R.C.
IBM China Research Lab, Diamond Building, Zhongguancun Software Park, Beijing 100193, P.R.C.

ABSTRACT

For high definition (HD) H.264 decoding, deblocking filter
is one of the most time-consuming modules. This paper
proposes several vectorization approaches to speed up it on
a single synergistic processor element (SPE) of IBM Cell
Broadband Engine (Cell/B.E.) processor, by which great
performance improvements are achieved. The average
deblocking speed is 42.4 frames per second (fps) for 141
1080p H.264 video streams. The steady-going performance
is obtained for different streams of various contents and
bitrates. With the vectorized deblocking filter, the new HD
H.264 decoder is able to decode two 1080p H.264 video
streams simultaneously on PlayStation® 3 (PS3) in real-time.
The proposed approaches are practical on many other vector
processor platforms, but not limited to Cell/B.E. processor.

Index Terms HD H.264 decoder, deblocking filter,
vectorization, IBM Cell/B.E. processor

1. INTRODUCTION

The H.264 standard [1] brings a new efficient video
compression method to the multimedia industry.
Deblocking filter is a new feature compared with the
previous standards. It greatly enhances the subjective
quality of the picture. Meanwhile, the complexity overhead
is up to 6 % (access frequency) and 10 % (processing time)
at the decoder side [2]. For HD video, it is the most time
consuming module [3].

The IBM Cell/B.E. processor is a heterogeneous multi-
core processor which consists of one 64-bit PowerPC
Processor Element (PPE) and eight SPEs. The SPEs are
optimized for compute-intensive workloads, based on the
single-instruction multiple-data (SIMD) architecture. These
SPEs account for much of the computational power of the
Cell/B.E. processor [4]. At an operating frequency of 3.2
GHz, the eight SPEs in the first-generation Cell/B.E. chip
can perform up to 204.8 GFLOPS.

We implement HD H.264 decoder on Cell/B.E. to take
advantage of its computational power, and gains excellent

performance of simultaneously decoding two 1080p H.264
streams in real-time on PS3 with only 6 SPEs are opened for
use [5]. The work discussed in this paper is a part of the
above decoder, and is critical to the end performance.

The most effective optimization method on Cell/B.E. is
vectorization. However, it is very difficult to parallelize the
deblocking filter operations because there are a lot of data-
dependent branches in the boundary strength (BS) decision
procedure. Besides, the data storage pattern stops
parallelizing the vertical edge filtering procedure.
Respectively, we propose a branch vectorization approach
to eliminate those data-dependent branches for BS
calculation and a fast vectorized macroblock (MB) rotation
approach to get over the data storage pattern barrier.

Section 2 introduces the branch vectorization approach.
Section 3 introduces the vectorization of the vertical &
horizontal edge filtering kernels, wherein the fast vectorized
MB rotation approach is described in details. Section 4
shows the experimental results. The conclusion is drawn in
section 5.

2. BRANCH VECTORIZATION IN BOUNDARY
STRENGTH DECISION PROCEDURE

A conditional filtering is applied to vertical or horizontal
edge of a 4×4 block [1]. The first phase is to decide the BS.
It is nearly impossible to parallelize the original boundary
strength decision procedure due to the numbers of data-
dependent branches. We notice that the following
conditions together decide the final BS:

Table 1: Conditions for boundary strength decision.

C1 The boundary is a slice boundary.

C2 The boundary is between two intra coded MB.

C3 The boundary is MB boundary.

C4 The two sub-MBs have coefficiencies.

C5`
The two neighboring sub-MBs are in the same reference
picture.

C6 The two neighboring 4x4 blocks are in an 8x8 sub-MB.

C7 The motion vector difference is greater than one pixel.

897978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

All the MBs are separated into two categories: the Intra
MB and the Inter MB. For Intra MBs (C2 is true), the four
sub-MBs on the same edge share the same BS value. The
BS calculation follows the rule: if C1, then BS=0; if C3, then
BS=4; else BS=3. For Inter MBs, the conditional branches
for BS calculation can be summarized as:

� �

1 1 4 6

2 1 4 6

3 1 4 5 6

4 1 4 5 6

5 1 4 5 7 6

6 1 4 5 7 6

7 1 4 5 7

8 1

! & &! ,
! & & ,
! &! &! &! ,
! &! &! & ,
! &! & &! &! ,
! &! & &! & ,
! &! & & ,

, 1, ! 0, 1, 2,3, 4,5,6,7 .i i

T C C C
T C C C
T C C C C
T C C C C
T C C C C C
T C C C C C
T C C C C
T C where C C i

�
�

�

�
�

�
�

� � � � �

!Ci denotes the condition when the i-th statement in Table 1
is false. And we construct the branch vector:

� �1 2 3 4 5 6 7 8, , , , , , , , 0,1 ,1 8.iT T T T T T T T T where T i�� 	 �

�

Obviously, , 1 , 0,1 , 8,j ij T i j T i j� � �� �

 which means
only one condition is true at a time. If we further construct
the condition vectors as below:

1 1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4

5 5 5 5 5 5

6 6 6 6 6 6 6

7 7 7 7

! ,! ,! ,! ,! ,! ,! , ,

, ,! ,! ,! ,! ,! ,1 ,

1, 1,! ,! , , , , 1 ,

! , ,! , ,! , , 1, 1 ,

1, 1, 1, 1,! ,! , , 1 ,

C C C C C C C C C
C C C C C C C C
C C C C C C
C C C C C C C

C C C C

�� 	

�� 	

�� 	

�� 	

�� 	

�

�

�

�

�

the branch vector can be denoted as:
1 4 5 6 7& & & &T C C C C C�
� � � � �� .

Only 0, 1, and 2 are valid BS values for Inter MB when the
corresponding condition Ti is true, which is represented as
the vector:

2,0,1,0,1,0,0,0R �� 	
� .

The BS decision procedure for Inter MB now can be
replaced by the vector operations through 3 steps:
1. Construct the condition vectors iC

�
according to the

value of Ci ;
2. Calculate the value of T

�
 by carrying out five vector bit

AND operations;
3. The final BS values of the inter coded MBs should be

derived by
1,i i i iBS R if T where R R and T T� � � �

� � .
As the result, no matter what the conditions are, the BS

decision procedure contains constant number of vector bit
AND operations, and these vector operations are accelerated
by the SPE, which leads to a much higher and more stable
computing speed than the scalar design.

3. VECTORIZED FILTERING KERNELS

When BS values are decided, the filtering operation is first
executed on the four vertical edges then on the four
horizontal edges for each MB. Assume block P and block Q
are neighboring 4x4 blocks, and denote the pixels on the lth
row or column within these two blocks as pli and qli (before
being filtered) respectively. The pixels standing on each
side of the edge is in the below order:

� �3 2 1 0 0 1 2 3| , , 0,1,2,3 0 , 255l l l l l l l l li liq q q q p p q q i l q p� �

 .
We use the case of strong edge filtering (BS=4) for U/V
component as an example to explain the vetorization
process. In this case:

� �0 1 0 1
1 2 2
4l l l lp p p q� � � � � .

Correspondingly, 0lq� is calculated in the same way. Denote
the pixel vectors as:

1 2 1 2, , , , , , , ,i i i Ni i i i NiP p p p Q q q q�� 	 �� 	
��

� �

then define the vector addition and numerical multiplication
as:

1 1 2 2

1 2

, , , ,
, , , , ,

i i i i i i Ni Ni

i i i Ni

P Q p q p q p q
kP kp kp kp k R
� �� � � � 	

�� 	 �

��
�

�
�

the strong edge filtering polynomial for U/V component
could be rewritten in the vector form as:

� �0 1 0 1
1 2 2 ,
4

P P P Q� � � � �
� �� � �

which equals to

� �

� �

� �

01 00 01

00 0001 01

11 10 11
10 1011 11

20 21 20 21
21 20 21

31 3130 30

31

1 2 2
4

2 1 2 221 42
2 14 2 2

42
1 2
4

p p q

p pp q
p p qp pp q

p p p q p p q
p qp p

p

� � �

� � �� � � �� � � � � �
� �� � � �� � � � � � �� �� � �� � � �� � � � � �� � � � �� �� � � �� � � � � ��

� � �� �� � � �� � � � � �� � � �� � � �� �� � �� � � �� � � �� �
� �30 31 2

.
p q

� �
� �
� �
� �
� �
� �
� �
� �
� �
� � � � �
� �

For horizontal edge filtering, the iP
�

and the iQ
�

are
stored in rows and fit the vector order, so it is easy to
perform the vetorization. For vertical edge filtering,
obviously, rotating the MB in a two-dimension (2D) array
before filtering is a feasible way for parallelizing the
computations. The proposed vertical edge filtering process
is illustrated in Figure 1, which reuses the horizontal edge
filtering kernel with a pre-rotation (clockwise) and a post-
rotation (counter-clockwise).

Figure 1: The proposed vertical edge filtering kernel.

898

Since there are two rotations performed for each MB,
we propose a fast MB rotation approach to guarantee the
end performance.

3.1. FAST VECTORIZED MB ROTATION

The 2D arrays, where the MBs are stored, should be rotated
clockwise and then counter-clockwise.

For any N N 2D array, where N is power of 2, if we
use the common element exchanges, the complexity of the
entire rotation is O(N2). However, by utilizing the vector
instructions, we can introduce a fast vector rotation, whose
complexity is O(log2N). With the vector instructions, 16
bytes of data can be manipulated at a time. The rotation
steps can be represented as mappings.

Define a N N matrix A, where N=2k and k is an
positive integer.

11 12

21 22

, .
2 2ij

A A N NA A is submatrices
A A

� �
� �� �
� �

Define mapping f as
� �: , | 0 255, ,N N N Nf W W where W x x x Z� �� �

 �

� � 11 12 21 11

21 22 22 12

.
A A A A

f A f A
A A A A

� �� � � �
� � �� �� � � �

� � � �� �
�

Then the rotation consists of the following steps:
Step 1: f(A);
Step 2: For each 2k-1 2k-1 submatrices Aij, do f(Aij);
Step 3: Recursively execute step 1 and step 2 until the pixel
level rotation is performed (k recursions).

Take a clockwise rotation of an 8x8 block as the
example which is shown in Figure 2. First of all, the 8x8
block is divided into four 4x4 blocks at Step A. Then do the
rotation mapping f to exchange the positions of the four 4x4
blocks clockwise at Step B. Recursively, divide each one of
the four 4x4 blocks into four 2x2 blocks at Step C. And
exchange the positions of four 2x2 blocks within each 4x4
block clockwise at Step D. The last step is to change the
four pixels within each 2x2 block clockwise at Step E.

Figure 2: an example of fast vectorized MB rotation
(clockwise).

Similarly, for the counter-clockwise rotation, only f -1

needs to be defined:
� �

� �

1

11 12 12 221 1

21 22 11 21

: , | 0 255, ,

.

N N N Nf W W where W x x x Z

A A A A
f A f A

A A A A

� � �

� �

� �

 �

� �� � � �
� � �� �� � � �

� � � �� �
�

The counter-clockwise rotation procedure is the same
as the clockwise rotation except the rotation mapping f
should be replaced with f -1.

With the fast vectorized MB rotation approach, the
horizontal edge filtering kernel is reused by the vertical
edge filleting kernel, which not only takes the advantage of
the vector acceleration power of SPE but also reduce the
code size. Small code size is valuable for Cell/B.E. based
application since the size of local store (LS) on SPE is
limited to 256KB.

4. EXPERIMENTAL RESULTS

As the result of our implementation described above, the
optimized deblocking filter is averagely 32 times faster than
that of the simply optimized reference decoder JM11 [6].
The deblocking speed on single SPE is 42.4 fps averagely
for 141 1080p H.264 video. We in the following tests use
PS3 as the test platform. Further, denote deblocking filter of
simply optimized reference decoder JM11 as JM_SO, where
the code redundancy is removed from scalar code to make
comparisons fairer. We note the deblocking filter of our
decoder as Aeolus, where the proposed approaches are used.

Comparison of Filtering Time per MB

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

P_16x16

P_16x8

P_8x16

P_8x8

I_4x4

I_16x16

B_16x16

B_16x8

B_8x16

B_8x8

PSKIP

BSKIP

MB Type

ms

JM_SO Aeolus

Figure 3: The comparison of filtering time per MB between
JM_SO and Aeolus.

Figure 3 shows the comparison of filtering time per
MB between JM_SO and Aeolus. The results are the
averages for five 1080p bitstreams, the so-called ‘filtering
time’ covers the whole deblocking filtering process. The
five bitstreams are encoded by x264 encoder [7] from 5
different sequences, i.e. riverbed, rush_hour, sunflower,
blue_sky and pedestrian_area. They are encoded at about
10Mbps with 2 references frames selection and IPBPB
structure, each GOP includes 15 frames. The filtering time
of Aeolus is less than 0.003ms/MB in average, compared

899

with that of JM_SO of averagely over 0.089ms/MB, there is
about 32 times speedup. From Figure 3, we can see that for
different types of MBs, the filtering time of JM_SO varies
largely while that of Aeolus is steady-going. The reason is
that the proposed branch vectorization approach eliminates
the conditional branches, and almost all types of MB
execute the same computation for BS decision.

The same conclusion is drawn from Figure 4 for results
of pedestrian_area bistreams encoded at different bitrates.
All the Aeolus curves are gathered at the bottom. They are
very close to each other and nearly horizontal to the bottom
line. Meanwhile, the JM_SO curves rise when the bitrate
increases, especially for the P_16x16, B_16x16, P_16x8
and P_8x16.

Comparison of Filtering Time per MB

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11
0.12

8.7 10.4 12.8 15.3 18.9

Bitrate(Mbps)

ms

P_16x16 (JM_SO) P_16x8 (JM_SO) P_8x16 (JM_SO)
P_8x8 (JM_SO) I_4x4 (JM_SO) I_16x16 (JM_SO)
B_16x16 (JM_SO) B_16x8 (JM_SO) B_8x16 (JM_SO)
B_8x8 (JM_SO) PSKIP (JM_SO) BSKIP (JM_SO)
P_16x16 (Aeolus) P_16x8 (Aeolus) P_8x16 (Aeolus)
P_8x8 (Aeolus) I_4x4 (Aeolus) I_16x16 (Aeolus)
B_16x16 (Aeolus) B_16x8 (Aeolus) B_8x16 (Aeolus)
B_8x8 (Aeolus) PSKIP (Aeolus) BSKIP (Aeolus)

Figure 4: The comparison of filtering time per MB between
JM_SO and Aeolus at different bit rates.

The stability makes this design valuable for a wide
range of H.264 bitrates, so that it could be promoted to
many different platforms and applications.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Get_BS

Ver_Filter

Hor_Filter

ms

JM_SO Aeolus

Figure 5: Time breakdown for deblocking filtering.

Figure 5 shows the time breakdown of the
vectorization process where the performance progress is
also clearly observed. The bitstreams used here are the same
as that used in Figure 3. Get_BS denotes boundary strength
decision procedure; Ver_Filter denotes vertical edge
filtering procedure with fast vectorized MB rotation

performed; and Hor_Filter edge denotes horizontal edge
filtering procedure.

5. CONCLUSIONS

This paper introduces several vectorization approaches for
the deblocking filter of HD H.264 video decoder.

In BS decision procedure, the data-dependent branches
are replaced by the vector operations. The steady-going
performance is obtained for varied contents and bit rates.

Filtering process for a set of samples across the
horizontal and vertical block edges is parallelized by vector
operations. A fast vectorized MB rotation approach of low
complexity is proposed to ensure the final performance. It
also reduces the code size since the computation kernel can
be reused after MB rotation.

The vectorization approaches introduced in this paper
are very practical methods for designing the deblocking
filter. Its effectiveness and efficiency have been solidly
proved on IBM Cell/B.E. processor but not limited to this
specific platform. By using single SPE of Cell/B.E.
processor, the deblocking speed gains averagely 42.4 fps for
141 1080p HD H.264 video streams. This number varies
from 40 to 44 over the different streams. With the optimized
deblocking filter, the overall decoder is able to decode two
streams of 1080p H.264 video simultaneously in real time
(over 33 fps) on PS3, where one Cell/B.E. processor is
assembled and only 6 SPEs of it are opened for use.

6. REFERENCES

[1] ITU-T Recommendation H.264 & ISO/IEC 14496-10,
"Advanced Video Coding for Generic Audiovisual Services",
Version 4, 2005.

[2] S. Saponara, C. Blanch, K. Denolf, and J. Bormans, “The JVT
Advanced Video Coding Standard: Complexity and
Performance Analysis on a Tool-by-tool Basis,” Packet Video
Workshop (PV’03), Nantes, France, April 2003.

[3] M. Alvarez, E. Salamí, A. Ramirez, M. Valero, “A
Performance Characterization of High Definition Digital
Video Decoding using H.264/AVC,” 2005 IEEE
International Symposium on Workload Characterization
Austin TX, USA, October 2005.

[4] T. Chen, R. Raghavan, J.N. Dale, and E. Iwata, ‘‘Cell
Broadband Engine Architecture and its First
Implementation—A Performance View,’’ IBM J. Res. & Dev.,
vol. 51, no. 5, pp. 559–572, 2007.

[5] Y. Yuan, R. Yan, H.D. Li, X. Liu, and S. Xu, “High
Definition H.264 Decoding on Cell Broadband Engine,”
ACM Multimedia '07, Demo session 2, Augsburg, Germany,
September 2007.

[6] Joint Video Team Reference Software, Version 11 (JM11),
http://iphome.hhi.de/suehring/tml/download/.

[7] http://www.videolan.org/x264.html.

900

