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ABSTRACT

This paper investigates the problem of face recognition with par-
tially occluded images without assuming prior information about the
distortion, and with only a single training image or a small number
of training images for each class to be identified. A new approach
is presented, which is an extension of our previous posterior union
model. The new approach is formulated by using a similarity mea-
sure in place of the probability measure, thereby allowing the use
of a single training image to represent a class. The new approach
achieves improved robustness to partial occlusion by focusing the
recognition mainly on the matched local regions, which are selected
automatically subject to an optimality criterion to maximize the sim-
ilarity of the correct class. Two databases, XM2VTS and AR, have
been used to evaluate the new approach. The results indicate that the
new system is able to perform as well as an oracle model for deal-
ing with various simulated and realistic partial distortions/occlusions
without requiring prior information.

Index Terms— partial distortion, partial occlusion, similarity,
robustness, face recognition.

1. INTRODUCTION

In many face recognition applications, such as security and multi-
media information retrieval, we require the recognition system to be
robust to partial distortion/occlusion without assuming prior knowl-
edge. A number of techniques have been developed to deal with this
problem. Many of them are based on the idea of “recognition by
parts” . These techniques usually divide the face into several parts
and then use a pre-defined voting space to combine the local match-
ing scores into an overall decision [1]–[3]. Other approaches use
a statistical model, e.g., Gaussian mixture model (GMM), or self-
organizing map neural network, to model each local region and com-
bine their scores [4]–[6]. For example, in the GMM-based method
described in [4], the overall score is formed by summing the likeli-
hoods from the individual local GMMs. This method has been ex-
tended further to include a weight to each GMM to deemphasize
those local features that are affected by facial expression changes,
estimated using an optical flow approach [5]. More recently, Jong-
sun et al. [7] proposed a part-based local representation approach,
namely locally salient ICA, which extracts robust features for im-
portant facial parts as the representation of a face. Su et al. [8] de-
scribed the selection of discriminative Gabor Fisher patches and the
linear combination of multiple classifiers on the selected features
for face recognition. Fidler et al. [9] proposed a robust classifier,
which combines discriminative and reconstructive subspace meth-
ods to deal with partially occluded areas; occluded areas are detected
as outliers and removed from the recognition.

In our previous work [10], we described a statistical approach to
face recognition with unknown, partial occlusion. Our system was
built on a novel statistical model, namely the posterior union model
(PUM). PUM is an approach for focusing the recognition on reliable
local images, thereby improving the mismatch robustness, while as-
suming no prior information about the occlusion. PUM achieves the
robustness by selecting the local images that maximize the poste-
rior probability of the correct class. Evaluated on a number of data-
bases under various distortion conditions, the PUM-based approach
has demonstrated improved robustness in comparison to other ap-
proaches [10]. However, like other statistical approaches, PUM re-
quires multiple training samples for each face in order to reliably
estimate a statistical model (e.g., GMM) for the face. Also, GMMs
may not be effective for modeling very large feature vectors, which
will usually result in a numerical underflow when computing the ex-
ponential functions.

In this paper, we extend our previous PUM approach from a
probability-based formulation to a similarity-based formulation,
to overcome both problems described above. The new formula-
tion is capable of accommodating a single training image and very
large feature vectors, and at the same time, retains the robustness
of the PUM approach for dealing with unknown partial distor-
tion/occlusion for face recognition.

2. BACKGROUND OF THE POSTERIOR UNION MODEL

Assume that a face image can be divided into N local images and
represented by an N -part feature vector X = (x1, x2, ..., xN ),
where xn is the feature vector for the n’th local image. Assume
that some of the local xn are corrupted but knowledge about the
number and identities of the corrupted xn is not available. Consider
finding the person class that best matches X from a set of C classes
(ω1, ω2, ..., ωC). This problem can be expressed as

[ω̂, XÎ ] = arg max
ω,I

P (ω|XI) (1)

where XI is a subset in X indexed by I ⊂ {1, 2, ..., N}. The ex-
pression seeks to find the most-probable class ω̂ by jointly maxi-
mizing the posterior probability P (ω|XI) over all classes ω and all
possible local feature subsetsXI , where Î contains the indices of the
optimal features found for the most-probable class ω̂. Using Bayes’
rules P (ω|XI) can be expressed as

P (ω|XI) =
p(XI |ω)P (ω)

�
ω′ p(XI |ω′)P (ω′)

(2)

where p(XI |ω) is the marginal probability of feature set XI associ-
ated with class ω, P (ω) is a prior probability for ω, and the summa-
tion in the denominator is over all possible classes.
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Given an ω, searching for the optimal local feature subset XÎ

to maximize P (ω|XI), defined in (2), can be computationally ex-
pensive. There are O(2N ) possibilities for a system using N local
images for a face. This problem can be relieved by replacing the
conditional probability p(XÎ |ω), for the optimal subset XÎ , with
the probability of the union of all feature subsets in X of the same
size as XÎ . To express this, we assume that there are Q local fea-
tures in XÎ and we indicate this by rewriting XÎ as XÎQ

, where Q

is the number of local features in XÎQ
and ÎQ = (n̂1, n̂2, ..., n̂Q)

gives the indices of these features, with each n̂i ∈ (1, 2, ..., N). The
conditional probability of the union of all feature subsets XIQ ⊂ X
where IQ = (n1, n2, ..., nQ) can be expressed as

p(
�

IQ⊂{1,2,...,N}
XIQ |ω) ∝

�

IQ⊂{1,2,...,N}
p(XIQ |ω)

=
�

n1n2...nQ

p(xn1 |ω)p(xn2 |ω) · · · p(xnQ |ω) (3)

where we have assumed statistical independence between xn,
p(xn|ω) is the conditional probability of local feature xn given
class ω, and the last summation is over all possible combinations
of n1, n2, ..., nQ. In (3), the proportionality is due to ignoring the
probabilities of the intersections between different XIQ . Since (3)
is a sum of the marginal probabilities of all Q-sized local feature
subsets, it contains the marginal probability of the optimal subset
XÎQ

which can be assumed to dominate the sum because of the best
feature-model match, i.e.,

p(
�

IQ⊂{1,2,...,N}
XIQ |ω) � p(XÎQ

|ω) (4)

Thus, substituting the union probability (3) into (2) for p(XI |ω),
we effectively reduce the problem of jointly estimating ω and the
indices of optimal features I , i.e., (1), to a problem of jointly esti-
mating ω and the number of optimal features Q, which has only N
possibilities, i.e.,

[ω̂, Q̂] = arg max
ω,1≤Q≤N

p(ω|XÎQ
) (5)

While computing individual p(XIQ |ω) for all possible Q from 1
to N involves 2N combinations, computing the union probability
(3) concerning the sum of p(XIQ |ω) over all possible XIQ can be
done efficiently using a recursive algorithm, illustrated in Fig. 1 with
an example with four elements. The algorithm has a complexity of
only aboutO(N(N +1)). The above model, namely posterior union
model (PUM), has been incorporated into a GMM-based PDBNN,
and has shown robustness to partial distortion and occlusion [10].

3. THE PROPOSED NEW APPROACH

Approaches based on GMM (including the PUM described above)
can have two difficulties:

1. They are inaccurate for modeling classes if there is only a
single training sample or a small number of training samples.

2. They may not be effective for modeling very large feature
vectors (for example, a Gabor feature vector typically con-
tains over 104 coefficients for a 96 × 96 image), which will
usually result in numerical underflow.

Fig. 1. A recursive algorithm for calculating the sum of the proba-
bilities of all Q-element combinations, for Q = 1 to 4, from a set
consisting of N = 4 elements.

To overcome the above problems, we propose a new formulation
for the PUM, which is not based on probabilities but on a novel sim-
ilarity measure. The new measure is a transformation of the cosine
similarity, which has been widely used in face recognition. The co-
sine similarity for comparing a testing vector X = (x1, x2, ..., xN )
and a reference vector Y = (y1, y2, ..., yN ), each being expressed
as N local vectors, can be written as:

S(X, Y ) =
X · Y

‖ X ‖‖ Y ‖

=

N�

n=1

xn · yn

‖ xn ‖‖ yn ‖ · ‖ xn ‖‖ yn ‖
‖ X ‖‖ Y ‖

=
N�

n=1

S(xn, yn)wn (6)

where S(a, b) = a · b/||a||||b|| is the inner product between two
vectors a and b normalized by their respective norms. Equation (6)
shows that the overall cosine similarity equals the sum of the local
cosine similarities S(xn, yn) weighted by wn, which are the com-
parisons of the individual local ‘energies’ ||xn||||yn|| to the overall
‘energy’ ||X||||Y ||. As wn is a function of the overall ||X||, it will
be adversely affected by any local corruption within X . To remove
this coupling, we assume an equal wn for all the local features, i.e.,
they contribute equally to the overall similarity:

S(X, Y ) �
N�

n=1

S(xn, yn) (7)

Based on (7), we can reduce the effect of local distortion on recog-
nition by removing the corresponding ‘noisy’ S(xn, yn) from the
computation.

We use the PUM approach to estimate the optimal overall sim-
ilarity S(XÎQ

, YÎQ
), where ÎQ = (n̂1, n̂2, ..., n̂Q) defines the in-

dices of the Q optimal local similarities S(xn, yn), without assum-
ing prior knowledge about ÎQ. For this, we rewrite S(XÎQ

, YÎQ
) in

an exponential form that is proportional to the original form:

G(XÎQ
, YÎQ

) = M
S(X

ÎQ
,Y

ÎQ
)

(8)

= MS(xn̂1 ,yn̂1 )MS(xn̂2 ,yn̂2 )...M
S(xn̂Q

,yn̂Q
)

where M > 1 is a positive number. Comparing (8) to the PUM,
we find that G(XÎQ

, YÎQ
) takes a form of the likelihood of XÎQ

associated with YÎQ
(similar to p(XÎQ

|ω)), with eachMS(xn̂q ,yn̂q )
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giving the likelihood of the individual local features (similar to
p(xn̂q |ω)). Thus, following (4), G(XÎQ

, YÎQ
) may be approxi-

mated by summing G(XIQ , YIQ) over all Q-sized local feature
subsets, assuming that the optimal G(XÎQ

, YÎQ
) will dominate the

sum because of the best matching XÎQ
and YÎQ

and hence the
maximized G(XÎQ

, YÎQ
). So we have

G(XÎQ
, YÎQ

) ∝
�

IQ⊂{1,2,...,N}
G(XIQ , YIQ) (9)

=
�

n1n2...nQ

MS(xn1 ,yn1 )MS(xn2 ,yn2 )...M
S(xnQ

,ynQ
)

Equation (9) allows the fast computation of G(XÎQ
, YÎQ

) for all
possible Q = 1 to N by using the recursive algorithm illustrated in
Fig. 1, by treatingMS(xnq ,ynq ) as pq .

A decision rule similar to (5) can thus be obtained for jointly
estimating the class and optimal Q:

[ω̂, Q̂] = arg max
ω

�

Y ∈ω

max
1≤Q≤N

F (XIQ , YIQ) (10)

where, by definition,

F (XIQ , YIQ) =
G(XIQ , YIQ)�

ω′
�

Y ′∈ω′ G(XIQ , Y ′
IQ

)
(11)

which is similar to the class posterior probability (2).
Note from (10) that the above algorithm allows the use of a sin-

gle training image Y from each class ω; multiple training images Y
are accommodated by summing up their individual contributions as
shown in (10). Further, since each MS(xnq ,ynq ) varies only from
M−1 to M1, the overall dynamic range of the algorithm is M−N

to MN , which is independent of the size of the feature vectors but
only a function of the number of local imagesN . The new algorithm
thus enhances the PUM’s capabilities of handling small numbers of
training samples as well as large-sized feature vectors.

The above algorithm is based on an assumption that the sum
(9) is dominated by the optimal feature subset ÎQ which produces
the maximum similarity value. This domination can be approached
by selecting an appropriate value for M to amplify the difference
in similarity values associated with different feature subsets. Fig 2
shows a comparison of the recognition rates for using different val-
ues forM from 10 to 50000, for recognizing distorted images using
N = 16 local images, to be detailed in section 4. Fig 2 shows that
the accuracy becomes less sensitive to the value ofM as it increases;
whenM is larger than 5000, the accuracy becomes stable.

4. EXPERIMENTS

4.1. Experiments on the XM2VTS Database

First, experiments were conducted on the XM2VTS database. As
preprocessing, we localized the face within each image, and then
resized each face image to 96×96 pixels. We have run four recog-
nition experiments on the database. Each experiment included 100
persons selected randomly from the database, with four images for
each person. Of the four images, either one or two images were used
for training, and the remaining were used for testing. The testing set
contains clean images and corrupted images with partial distortion
by adding four different types of occlusion to each test image: (1)
sunglasses, (2) beard (for male) or scarf (for female), (3) combined
sunglasses/beard/scarf, and (4) hands. Fig.3 (a) shows an example.

Fig. 2. Effect of M on recognition rate, using N = 16 local im-
ages for each face image. Solid line: combined sunglasses and
scarf/beard occlusion on the XM2VTS database. Dashed line: scarf
occlusion on the AR database.

Fig. 3. (a) Five testing conditions on XM2VTS, and (b) two testing
conditions on AR.

We first compared our system with three other systems: (1) a
system based on the full cosine similarity (6), noted as CS; (2) a
system based on the simplified cosine similarity (7), noted as ∼CS,
which we used to study the effect of removing the weights from
the full CS system on recognition; and (3) an oracle system, which
assumes full a priori knowledge about the corrupted local images
and manually removes these local images from the recognition. The
oracle model represents an “ideal” recognition-by-parts model.

Each face image was divided into 16 non-overlapping local im-
ages (i.e.,N = 16), and then applied 5 scales× 4 orientations Gabor
filters to each local image. The Gabor coefficients obtained on each
local image, down sampled by 4 in both dimensions, were used as the
feature vector for each local image. The overall size of the feature
vector for each face image is thus (24×24×20/16)×16 = 11, 520.
M = 10, 000 was used in our experiments.

Table 1 shows the recognition accuracy with the use of one and
two training images, respectively, for each class. The accuracy rates
are averaged over the four experiments each containing 100 classes
as described above. Table 1 indicates that the proposed new method
performed similarly to the oracle model, except for the combined
sunglasses/beard/scarf distortions with one training example, where
a drop of 2.9% in accuracy was found for the new method. We see
that in some cases our new method was able to outperform the oracle
model. The oracle model improved the robustness by throwing away
distorted local images. However, some of the local images discarded
by the oracle model may be only partially affected by the occlusion.
In our new method, while the noisy local images with small similar-
ities can be largely ignored, they are not physically removed from
recognition (see (9)). Thus, each local image retains a contribution
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Table 1. Recognition accuracy (%) on the XM2VTS database for
the proposed new method, compared to a full cosine similarity sys-
tem (CS), a simplified cosine similarity system (∼CS), and an oracle
model, as a function of the number of training images for each class.

# Training Occlusion System
images type New Oracle CS ∼CS

Clean 94.1 94.1 94.1 94.1
Sunglasses 92.1 91.5 89.5 90.1

1 Beard/Scarf 88.5 88.5 80.2 84.6
Combined 81.6 84.5 56.6 63.5
Hand 85.1 86.8 79.5 83.5
Average 88.3 89.1 80.0 83.2
Clean 98.2 99.0 99.0 98.2

Sunglasses 99.7 99.5 96.5 97.2
2 Beard/Scarf 98.5 98.5 94.2 96.8

Combined 94.5 96.2 82.1 84.5
Hand 93.2 93.5 90.7 91.5
Average 96.8 97.3 92.5 93.6

Table 2. Recognition accuracy (%) on the AR database
# Training Occlusion System
images type New Oracle CS ∼CS
1 Sunglasses 72 74 58 63

Scarf 87 88 78 82
Average 79.5 81.0 68.0 72.5

4 Sunglasses 85 85 70 72
Scarf 98 96 85 88
Average 91.5 90.5 77.5 80.0

to recognition, proportional to its similarity value. The new method
also outperformed the other two methods, CS and∼CS. As indicated
in Table 1, the ∼CS system performed better than the CS system in
all noisy testing conditions, while there was a slight loss in accuracy
for the clean testing condition.

4.2. Experiments on the AR Database

Further experiments were conducted on the AR database, which con-
tains realistic corruptions. The data set used in our experiments con-
tains 400 frontal facial images from 50 subjects (eight images per
subject). For each person, we used one or four clean images for
training and four images, two with sunglasses and two with scarf,
for testing. Fig.3 (b) shows an example.

Table 2 presents the recognition accuracy. The results on the
AR database have further demonstrated that our new method per-
formed better than the CS and ∼CS methods, and as well as the
oracle model. Table 3 includes a further comparison with the results
obtained by using the discriminative subspace method, cited from
[9]. The discriminative subspace method used six training images
for each object while our method used only four. As indicated in
Table 3, our new method achieved higher accuracy rates than the
discriminative subspace method.

5. CONCLUSIONS

In this paper, we proposed a new approach for robust face recogni-
tion with partial distortion/occlusion, assuming a single or a small
number of training images, and assuming no prior information about

Table 3. Comparison of accuracy between the new method and the
discriminative subspace method [9] on the AR database.

Occlusion New method Discriminative subspace
type 4 training images 6 training images

Sunglasses 85 84
Scarf 98 93
average 91.5 88.5

the distortion. The new approach is an extension of our previous
PUM approach, by using a new similarity-based formulation instead
of the probability-based formulation. The new approach has shown
enhanced capabilities of accommodating small numbers of training
samples and large-sized feature vectors, which may be difficult to
accommodate in the PUM and other GMM-based approaches. Two
databases, XM2VTS and AR, have been used in our experiments.
The results have shown that the new approach is able to perform as
well as an oracle model when dealing with various simulated and
realistic partial distortions/occlusions.
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