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ABSTRACT

We propose in this paper a novel doubly weighted nonnega-

tive matrix factorization (DWNMF) method for imbalanced

face recognition. Motivated by the fact that some face sam-

ples and certain parts of each face sample are more useful

for recognition, we construct two weighted matrices based on

the pairwise similarity of face samples in the same class and

the discriminant score of each face pixel. Compared with the

existing NMF algorithm, the proposed DWNMF method can

more effectively exploit the discriminative and geometrical

information of face samples, and it is especially suitable for

imbalanced face recognition. Experimental results are pre-

sented to demonstrate the efficacy of the proposed method.

Index Terms— Face recognition, manifold structure,

nonnegative matrix factorization, subspace learning.

1. INTRODUCTION

Subspace learning-based face recognition has been widely

studied and numerous algorithms have been proposed dur-

ing the past two decades. The most representative such

algorithms include principal component analysis (PCA) [1],

linear discriminant analysis (LDA) [2], and locality pre-

serving projections (LPP) [3]. While these algorithms have

achieved good success in face recognition, they mainly make

use of face features as a whole and don’t explicitly emphasize

face samples and parts differently. There are psychological

and physiological evidences that human recognize objects

through part-based representations in the brain [4]. Based

on this belief, a new subspace learning method called non-

negative matrix factorization (NMF) [4, 5] has been recently

proposed in the literature to impose nonnegative constrains

in the basis and representation coefficients, leading to better

representation of part-based face features such as mouth, nose

and eyes, which have more discriminative information than

other parts such as cheek and forehead as indicated in [9].

A number of NMF extensions, such as DNMF [6], LNMF

[7], and TPNMF [8], have also been proposed to enhance the

representation capability and classification performance of

NMF.

Existing NMF-based algorithms, however, consider each

training sample contributing equally in the learning phase and

ignore the fact that the high similarity among some training

samples will result in large redundancy in the basis. In real-

world applications of face recognition, it is common to have

different number of useful training face samples due to pose

and illumination variations. Hence, a recognition algorithm

that can deal with imbalanced face samples and place proper

emphasis on different face samples and their parts is of great

interest and significance.

Motivated by aforementioned observations, we propose

in this paper a doubly weighted nonnegative matrix factoriza-

tion (DWNMF) method that can impose larger weights to face

samples which have low similarity with others and apply dif-

ferent emphases on different face parts. Being able to weight

the samples and their parts differently according to their

importance on recognition allows the proposed DWNMF

method to handle imbalanced training samples more effec-

tively. Our empirical results show that the proposed method

can better exploit the discriminative and geometrical infor-

mation of face features, resulting in better face recognition

performance, particularly for cases with imbalanced training

samples.

2. BRIEF REVIEW OF NMF

Given a nonnegative n × m matrix V and a rank parameter

r, the NMF model finds a nonnegative n × r matrix W and

another nonnegative r × m matrix H such that their product

WH approximates to V , i.e., V ≈ WH =
∑r

k=1 WikHkj ,

where i = 1, 2, . . . , n, j = 1, 2, . . . , m. Usually, r is chosen

to be smaller than min{m,n}. To find a good approximate

factorization, one can minimize the total square error between

V and WH with nonnegative constraints defined as follows:

min
W,H

{‖V − WH‖2 =
n∑

i=1

m∑
j=1

(Vij − (WH)ij)2}

s.t. W,H ≥ 0 (1)

To solve this nonconvex optimization problem, the classical

expectation maximization (EM) algorithm can be applied to

find the local minima and more details can be found in [5].
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3. THE PROPOSED DWNMF METHOD

The proposed DWNMF method makes use of two weight-

ing matrices to reflect the discriminative and geometrical in-

formation of face features. The first matrix, referred to as

between-sample weighting matrix Ab, is to impose different

weights on different face samples to reflect their respective

importance in the learning phase. The other matrix, referred

to as within-sample weighting matrix Aw, is to give appropri-

ate weights to pixels at different face parts. As both between-

sample and within-sample features are weighted simultane-

ously, we therefore name our proposed algorithm a “doubly

weighted” method.

3.1. Between-Sample Weighting Matrix

As high similarity among the training samples will result in

much redundancy in the basis of NMF (W ), introducing a

proper weighting matrix is an effective way to reduce this re-

dundancy. The basic rule should be that “the higher the sim-

ilarity between two samples, the smaller the weight should

be given”. Figure 1 provides one toy example to illustrate

this rule. The figure shows three classes of samples denoted

by squares, circles and triangles, and each class has different

number of samples. It can be seen that the number samples

in the circle or square class is less than that in the triangle

class, and there exists higher correlation among samples in

the triangle class. Hence, smaller weights should be assigned

to samples in the circle class. Furthermore, different weights

should also be assigned to the samples in the same class. For

example, in the circle class, as the distance between sample

S1 and sample S3 is much smaller than that of S1 and S2,

smaller weights should be given to S1 and S3 compared with

that of S1 and S2. To effectively characterize the similarity

and structure of the samples, we devise the following algo-

rithm to construct the between-sample weighting matrix.

Fig. 1. Toy example showing the different similarity and

structure in each class.

Given a set of properly normalized w×h face images, we

construct one training set of column image vectors Xij , where

Xij ∈ R
d=wh, by lexicographic ordering the pixels of the jth

image of the ith subject. Assume that there are n different

subjects and the cth subject has nc samples. The algorithm

for constructing Ab is described below:

(1) For each sample in the cth class, c = 1, 2, · · · , n, cal-

culate the similarity between each pair of samples in the

class;

sc
i,j = S(Xci, Xcj), i �= j (2)

We use the following similarity metric:

S(Xci, Xcj) = exp−‖Xci−Xcj‖2/σ (3)

where σ is a suitable constant and the elements of

S(Xci, Xcj) are all in range [0, 1].

(2) Find the maximum similarity value SM for Xij among

all pairwise similarities between Xij and other samples

in the ith class,

SM (Xij , :) = max{sc
i,j} (4)

where j = 1, 2, · · · , ni and j �= i.

(3) Assign weight aij to sample Xij as follows:

aij = 1 − SM (Xij , :) (5)

(4) Normalize aij to make all the weights sum to unity, i.e.,∑i=n
i=1

∑ni

j=1 aij = 1:

aij =
1
ni

aij∑n
i=1

∑ni

j=1 aij
(6)

(5) Construct an N ×N diagonal weighting matrix Ab with

diagonal element aij , where N =
∑n

i=1 ni and

Ab = diag(a11, a12, · · · , a1n1 , a21, · · · , annn).

3.2. Within-Sample Weighting Matrix

Owing to their different influences on face recognition, differ-

ent parts of face features should be assigned different weights

to achieve better discrimination performance. Intuitively,

some face parts such as eyes, nose and mouth may have

more discriminant information than other parts such as cheek

and forehead. We propose as follows a pixel-region fusion

weighting method to exploit the discriminant information of

different face parts:

(1) Apply a feature selection scheme based on a new

manifold-based maximum margin (MMM) criterion [10], de-

scribed below, to calculate the discriminant capability of each

pixel in the face samples.

Let fri denote the rth feature of the ith face sample xi,

where i = 1, 2, · · · , N and r = 1, 2, · · · ,m, and let Lr

denote the MMM score of the rth feature. We first con-

struct a graph G to describe the locality structure of the data
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set. For each sample xi, we find its k nearest neighbors and

put an edge between xi and its neighbors. Let N(xi) =
{x1

i , · · · , xk
i } be the set of the k nearest neighbors of xi. It

follows that G can be defined as

Gij =

{
1 if xi ∈ N(xj) or xj ∈ N(xi)
0 otherwise

(7)

To better characterize the locality and discriminant infor-

mation of the data set, we split N(xi) into two subsets:

Nb(xi) and Nw(xi), s.t., Nb(xi)∩Nw(xi) = ∅ and Nb(xi)∪
Nw(xi) = N(xi), where Nw(xi) contains the neighbors

with labels the same as that of xi and Nb(xi) contains the

neighbors with different labels. Then, derive two matrices Gc

and Gp as follows:

Gc
ij =

{
ρ if xi ∈ N(xj) or xj ∈ N(xi) and l(xi) = l(xj)
0 otherwise

(8)

and

Gp
ij =

{
1 if xi ∈ N(xj) or xj ∈ N(xi) and l(xi) �= l(xj)
0 otherwise

(9)

where l(xi) and l(xj) denote the class labels of xi and xj ,

and the values of k and ρ are empirically set to 10 and 50,

respectively.

(2) Define two diagonal matrices Dc and Dp, where

Dc
ii =

∑
j Gc

ij and Dp
ii =

∑
j Gp

ij , and calculate the MMM

matrices as Hc = Dc − Gc and Hp = Dp − Gp. Then,

compute the pixel-based MMM score for the rth feature:

Lr =
fT

r Hcfr

fT
r Hpfr

(10)

where r = 1, 2, · · · ,m.

(3) For each face image xi with size of w × h, parti-

tion it into P k × l non-overlapping small patches xi =
(x1

i , x
2
i , · · · , xP

i ), as shown in Figure 2.

Let mq = (m1
q,m

2
q, · · · ,mN

q )T be the average of the qth

patch of all the samples. Apply the similar approach to calcu-

late the patch-based MMM score for each q patch:

Rq =
mT

q Hcmq

mT
q Hpmq

(11)

where q = 1, 2, · · · , P .

Fig. 2. Partitioning a face image into patches.

(4) For each position (i, j) in the face, we find its pixel-

based MMM score Lij and patch-based score Rij , where

Lij = L(x), Rij = R(y), x = (i − 1) × w + j, and

y = ([(i − 1)/k] + 1) × k + ([(j − 1)/l] + 1). Operator

[c] obtains the integer part of c.

(5) For each pixel f(i, j) in each face image, we com-

bine the pixel-based and patch-based MMM scores to obtain

a fused score as follows:

ti,j = LijRij (12)

where 1 ≤ i ≤ w and 1 ≤ j ≤ h.

(6) Construct a wh × wh matrix Aw with diagonal ele-

ments tij’s, i.e., Aw = diag(t1,1, t2,1, · · · , tw,1, · · · , tw,h).

3.3. The Algorithm

We formulate the proposed DWNMF algorithm by integrat-

ing the between-sample and within-sample weighting matri-

ces into the original NMF method as follows:

(1) Given N training samples Xij containing n different

subjects, and each subject has ni samples of size w × h. Or-

ganize the given training samples into one N ×wh matrix V ,

with each column of which containing one training sample.

(2) Construct the N × N between-sample weighting ma-

trix Ab for V . Multiply V with Ab to obtain V ′, i.e.,

V ′ = V Ab (13)

(3) Perform NMF for V ′ to obtain the wh × r bases W
and r × N coefficients H , respectively.

(4) Construct the wh × wh within-sample weighting ma-

trix Aw, and then multiple Aw with W to obtain the new bases

W ′:
W ′ = AwW (14)

(5) Project the training and testing samples on W ′ and

extract their feature representations, respectively.

4. EXPERIMENTS AND RESULTS

We have used the Extended Yale B [11] and CMU PIE [12]

face databases to evaluate the effectiveness of our proposed

DWNMF method for face recognition. The Extended Yale

B database consists of 2432 gray images of 38 human sub-

jects with different 64 illumination conditions, while the PIE

database comprises 68 subjects with 41368 face images of

different poses and illumination conditions. In our experi-

ments, we selected 45 frontal images of each subject in the

PIE database.

We constructed imbalanced training sets for experiments

on imbalanced face recognition. For the Extended Yale B

database, we randomly divided the 38 subjects into four non-

overlapping groups—two with 10 subjects and two with 9

subjects—and randomly selected 5, 5, 10, and 10 images, re-

spectively, for each subject in the four different groups as the

training set. For the PIE database, we similarly divided the

database into four different groups of 17 subjects each. For
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each group, we randomly selected 10, 15, 20 and 25 images

of each subject to construct the training set. The remaining

images in the two databases were used to construct the testing

set. The nearest neighbor classifier is applied for the recog-

nition and the experiments were run randomly 20 times to

obtain the average recognition accuracy.

We compared our proposed DWNMF method with other

popular subspace learning algorithms including PCA [1],

LDA [2], LPP [3] and NMF [4, 5]. The best results of the

comparing algorithms were obtained by exploring all possible

feature dimensions, and the results along with their standard

deviation are tabulated in Table 1. Figure 3 shows the recog-

nition performance versus different dimension in the reduced

subspace.

Table 1. Comparison on recognition performance using the

Extended Yale B and the PIE database (mean±std).

Method Extended Yale B PIE

Accuracy (%) Dim Accuracy (%) Dim

PCA 40.97 ± 3.4 340 62.39 ± 2.5 140

LDA 59.09 ± 2.8 37 67.52 ± 1.8 67

LPP 57.06 ± 2.3 220 66.55 ± 1.6 120

NMF 55.94 ± 2.7 180 60.75 ± 2.1 100

DWNMF 63.87 ± 1.8 200 67.72 ± 1.9 100
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Fig. 3. Average recognition accuracy versus reduced dimen-

sion. The left is on the Extended Yale B database and the right

is on the PIE database.

We have made the following observations from the exper-

imental results:

1) The proposed DWNMF notably outperforms PCA and

LPP on all experiments. The superiority of DWNMF stems

from the fact that both discriminative and geometric informa-

tion are more effectively exploited in DWNMF to improve the

recognition performance.

2) The proposed DWNMF also outperforms LDA, which

may due to the fact that DWNMF doesn’t need the assumption

of Gaussian distribution on the samples as required by LDA.

3) Compared with NMF, DWNMF also has better recog-

nition performance. The reason may be that DWNMF can

effectively reduce the redundancy of the basis generated from

similar training samples, a property that makes DWMF par-

ticularly suitable for imbalanced face recognition.

5. CONCLUSIONS

We have proposed in this paper a novel NMF-based subspace

learning algorithm, called doubly weighted nonnegative ma-

trix factorization (DWNMF), for efficient face recognition

with imbalanced number of training samples. The DWNMF

method works by using two weighting matrices, between-

sample and within-sample weighting matrices, to better ex-

ploit the discriminative and geometric information of sam-

ples for imbalanced face recognition. The proposed doubly

weighed technique can likely be extended to other subspace

learning algorithms.

6. REFERENCES

[1] M. Turk and A. Pentland, “Eigenfaces for recognition,” Jour-
nal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.

[2] P. N. Belhumenur, J. P. Hepanha, and D. J. Kriegman, “Eigen-

faces vs. fisherface: recognition using class specific linear pro-

jection,” IEEE Trans. on PAMI, vol. 19, no. 7, pp. 711-720,

1997.

[3] X. He, S. Yan, Y. Hu, P. Niyogi, and H. J. Zhang, “Face recog-

nition using Laplacianface,” IEEE Trans. on PAMI, vol. 27, no.

3, pp. 328-340, 2005.

[4] D. D. Lee, and S. Seung, “Learning the parts of objects by non-

negative matrix factorization,” Nature, vol. 401: pp. 788-791,

1999.

[5] D. D. Lee, and S. Seung, “Algorithms for non-negative matrix

factorization,” in Proc. NIPS’2001, pp. 556-562, 2001.

[6] S. Zafeiriou, A. Tefas, I. Buciu, and I. Pitas, “Exploiting dis-

criminant information in nonnegative matrix factorization with

applications to frontal face verification,” IEEE Trans. on Neu-
ral Networks, vol. 17, no. 3, pp. 683-695, 2006.

[7] S. Z. Li, X. Hou, H. J. Zhang, and Q. Cheng, “Learn-

ing spatially localized, parts-based representation,” in Proc.
CVPR’2001, pp. 207-212, 2001.

[8] T. Zhang, B. Fang, Y. Y. Tang, G. He, and J. Wen, “Topology

preserving non-negative matrix factorization for face recogni-

tion,” IEEE Trans. on Image Processing, vo. 17, no. 4, pp. 574-

584, 2008.

[9] X. Xie, and K. M. Lam, “Gabor-based kernel PCA with dou-

bly nonlinear mapping for face recognition with a single face

image,” IEEE Trans. on Image Processing, vol. 15, no. 9, pp.

2481-2492, 2006.

[10] X. He, D. Cai, and J. Han, “Learning a maximum margin

subspace for image retrieval,” IEEE Trans. on Knowledge and
Data Engineering, vol. 20, no. 2, pp. 189-201, 2008.

[11] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman,

“From few to many: Illumination cone models for face recog-

nition under variable lighting and pose,” IEEE Trans. on PAMI,
vol. 23, no. 6, pp. 643-660, 2001.

[12] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illuminant,

and expression database,” IEEE Trans. on PAMI, vol. 25, no. 9,

pp. 1615-1618, 2003.

880


