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ABSTRACT

The pose variation involved in facial images significantly degrades
the performance of face recognition systems. In this paper, a 
component-wise pose normalization method for facilitating pose-
invariant face recognition is proposed. The main idea is to
normalize a non-frontal facial image to a virtual frontal image
component by component. In this method, we first partition the 
whole non-frontal facial image into different facial components
and then the virtual frontal view for each component is estimated 
separately. The final virtual frontal image is generated by
integrating the virtual frontal components. The proposed method 
relies only on 2D images, therefore complex 3D modeling is not 
needed. The experimental results using the CMU-PIE database 
demonstrate the advantages of the proposed method.

Index Terms: pose-invariant face recognition, component-wise pose 
normalization, virtual view generation, face recognition.

1. INTRODUCTION

Face recognition has attracted much attention due to its wide 
applications in commerce, law enforcement and other areas.
Existing work in face recognition has demonstrated good
recognition performance on frontal, expressionless views of faces 
with controlled lighting conditions. However, a practical face
recognition system needs to work under differing imaging
conditions, such as differing poses, expressions, and illumination
changes. In this paper, we focus on face recognition under differing
pose conditions. 

It is not difficult for human beings to recognize the same 
individual in varying poses. However, for automated systems, this 
is a difficult task because the differences in images of two varied 
poses of a person would be more significant than the differences 
between two distinct persons in the same pose.

When the face is rotated in the image plane, it can be
normalized by detecting at least two facial features. However,
when the face is subjected to in-depth 3D rotation, simple
geometrical normalization is not possible. Many approaches have 
been proposed for automated face recognition under 3D rotation.
Having multi-view images stored in the gallery is one strategy for
dealing with the pose-variant problem, and is a direct extension of 
frontal face recognition. An algorithm of this type is presented in
[1]. In [2] , the popular eigenface approach is extended to handle 
multiple views. The authors compare the performance of a
parametric eigenspace (computed using all views from all subjects) 
with view-based eigenspaces (separate eigenspaces for each view). 

In the experiments, the view-based eigenspaces outperformed the 
parametric eigenspace. Other approaches that use 2D model-based
multi-view algorithms have been proposed for face tracking across 
significant pose changes. In [3], separate active appearance models 
are trained for profile, half profile  and frontal views.

Another popular solution is to generate virtual views. A generic
3D model of the human face can be used to predict the appearance 
of a face under different pose parameters [4][5]. Once a 2D face 
image is texture mapped onto the 3D model, the face can be treated
as a traditional 3D object in computer graphics, undergoing 3D 
rotations. In 3D methods, we need to construct a precise 3D model 
of the face from the current image, which will require many
techniques such as active camera calibration, feature points
selection/detection, correspondent points labeling from different 
views, 3D model translation, rotation and projection, and a
database of 3D heads. The enormous computational complexity 
involved may preclude it from becoming a real-world application.

There are also some 2D example-based view synthesis
methods that can generate virtual views under multiple poses. [6]
propose an algorithm to synthesize novel views from a single
image by using prior knowledge of the facial images and apply
them to face recognition. In this method, prior face knowledge is
represented by 2D views of prototype faces. The underlying
assumption of the method is that the 3D shape of an object (and 2D 
projections of 3D objects) can be represented by a linear
combination of prototype objects. It follows that a rotated view of 
the object is a linear combination of the rotated views of the 
prototype objects. The so-called Linear Object Classes (LOC) idea 
is used to synthesize rotated views of facia l images from a single 
example view. In LOC, a facial image is first separated into shape 
vector and texture vector, and then LOC is applied to them
respectively. The virtual “rotated” images are then easily generated
using a base set of 2D prototypical views. The synthesized virtual
views are highly dependent on the correspondence between the 
images. However, building accurate pixel-wise correspondence
between facial images is a difficult problem.

In [7] , a Local Linear Regression (LLR) method, which starts 
from the basic idea of LOC, is proposed. The authors show that, in 
the case where the given samples are well aligned, there exists an 
approximate linear mapping between two images of one person 
captured under variable poses. This mapping is consistent for all 
persons, if their facial images are aligned in a pixel-wise manner.
Unfortunately, pixel-wise correspondence between images is still a 
challenging problem. In most real-world face recognition systems, 
facial images are only coarsely aligned, based on very few facial 
landmarks, such as the two eye centers. In this case, the above-
mentioned assumption of linear mapping no longer holds
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theoretically, since it becomes a complicated nonlinear mapping. 
LLR proposes that by partitioning the whole surface of the face
into multiple uniform blocks, the linearity of the mapping for each 
block is increased because of a consistent normal and better control
over alignment.

In this paper, we start from the basic idea of LOC and LLR,
that is, we try to generate the frontal view of a given non-frontal
facial image based on the 2D prototypes in a training set with 
corresponding image pairs of some specific poses. However, unlike 
previous methods , we apply the generation algorithm on multiple
facial components rather than on separate shape and texture vectors
(LOC) or on uniform image blocks (LLR). Accurate dense
correspondence between facial images is not required; what we 
need is just a coarse alignment based on the two eye centers. In the 
proposed method, the whole non-frontal facial region is partitioned 
into multiple facial components where different normalization
parameters are applied to different components for the generation
of their frontal counterpart.

The remainder of this paper is organized as follows: Section 2 
describes the framework of the proposed method. In Section 3, the 
pose alignment algorithm is discussed in detail. The performance 
evaluation of the proposed method is presented in Section 4. 
Section 5 concludes the paper.

2. FRAMEWORK OF THE PROPOSED APPROACH

We focus our attention on developing a technique for
synthesizing images that are different from the viewing positions 
of the sample model images, using only 2D views and information 
derived from prototype faces. Our motivation for using the
example-based approach lies in its potential as a simple alternative 
to the more complicated 3D model-based approach.

The idea of segmenting an image into patches was inspired by 
LLR. For the case of coarse alignme nt, the developers of LLR 
considered that the corresponding local facial regions of the frontal 
and non-frontal view pair satisfy the linear assumption much better 
than the whole facial region (GLR). From the viewpoint of LOC, 
we can understand that estimating the linear combination
coefficients will be easier and more accurate using small patches 
rather than the whole image.

Distinct from LLR, which segments an image into uniform 
blocks, we partition images according to the facial components 
positions. The reason for this innovation lies in our observation 
that using uniform blocks may break facial components into pieces. 
Moreover, the size of the blocks is not easy to select. If too large, 
the resulting image is blurred. If too small, the coarse cross-pose
correspondence may be meaningless, result ing in many annoying 
artifacts.

Our method has two merits. First, the patches are more
meaningful than in LLR, and therefore the establishment of coarse
cross-pose correspondence is easier. The sizes of patches are
neither too large nor too small. They are only related to the image 
size and are assigned automatically; no manual selection of the
block size is needed, as in LLR does. Also the patch size is not 
uniform - different components have different sizes. Second, we do 
not break facial components into pieces. Thus, the blocking
artifacts introduced by the block-based method will not ruin those
facial components that are more important than others in face 
recognition.

The procedure for the proposed method is as follows (see 
Figure 1):

1. The images are segmented into facial components, 
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Figure 1. Component-based virtual frontal view generation

including the training set and the probe image.
2. For each component patch,

(a) the linear combination coefficients of the probe’s
non-frontal patch in terms of the training non-frontal
patches are computed.
(b) the virtual frontal patch is generated using the above 
coefficients and the training frontal patches.

3. The virtual frontal patches are integrated to form the 
virtual frontal image.

3. COMPONENT-WISE POSE ALIGNMENT

Given a non-frontal facial image, our aim is to generate its 
virtual frontal view based on a training set. Simply speaking, we
first represent the given non-frontal image using a linear
combination of the training non-frontal images. Then, using the 
linear combination coefficients and the training frontal images, we 
generate the virtual frontal view of the given image. Because our
method is component-based, we represent each component patch 
of the given non-frontal image using a linear combination of the 
corresponding training non-frontal patches. Finally, using the linear 
combination coefficients and the corresponding training frontal 
patches, we generate the virtual frontal patch. 

Estimating the linear combination coefficients for each patch 
becomes much easier and more accurate than estimating the global 
one because of the much lower dimension of the patches. This is 
factor especially important when the given training set is of limited 
size.

3.1. Component Segmentation
Because the positions of the two eyes’ are already known, we 

can use them to roughly segment facial images into facial
components, as shown below.

Let ),( ll yx  and ),( rr yx be the coordinates of the two eyes’
centers. The distance between the two eyes is lr xxd  . Please 
note that we do not consider the difference between ly  and ry .
Even though they are not equal, the difference between them is 
much smaller compared with the difference between lx  and rx ,
and can therefore be ignored.

Normally, the distance between the inner corners of the two
eyes is similar to the length of one eye. Therefore, we can use this 
information to segment a face (see Figure 2).

The facial image is segmented into seven different-sized
patches. Each patch contains one facial component, e.g., eye, the 
area between the eyes, nose, mouth, cheek.

As shown in Figure 2, moving from left to right and up to 
down, the sizes of the seven patches are calculated as follows:
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Figure 2. Component segmentation
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where w and h are the width and height of the image;
),max( rl yyy  .

Using this segmentation, we can avoid breaking facial features 
into pieces. In describing the following experiments, we will show 
the merit of this aspect of our procedure. Moreover, since this 
segmentation directly results in meaningful patches, the rough
cross-pose correspondence is established automatically. Figure 3
shows the component segmentation on images with different poses.

3.2. Coefficients Estimation
Let   kpp  ,0  be the training set of one component patch,

where 0p  denotes the frontal view composed of N

subjects  Nppp xxx ,02,01,0 ,...,, , and  Nkkkk pppp xxx ,2,1, ,...,,  is 
the corresponding non-frontal view under pose kp . Note that 

ikpx ,  is the counterpart of ipx ,0  from the same person but with 
different poses.

Following the LOC theory, we can use “prototypical” 2D
views and their known transformations to synthesize an operator 
that will transform a 2D view into a new 2D view when the object 
is a linear combination of the prototypes. 
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The decomposition of a given view kpx  in (1) and the 

Figure 3. Component segmentation on images with different poses

composition of the new view in (2) can be understood as a single 
linear transformation. First, we compute the coefficients iα  for the 
optimal decomposition (in the sense of least square). The given 
view is decomposed into the “example” N given prototypes by 
minimizing

2
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p
i

p ikk xx α (3)

We rewrite (3) as αkk ppx  , where kp  is the matrix formed 

by the N vectors ikpx ,  arranged column-wise, and α  is the
column vector of the iα  coefficients. Minimizing (3) gives

kk pp x )(α (4)

Then the new view 0px  is given by

kk ppppp xx


 000 α (5)

and thus can be learned from the 2D example pairs ),( 0 kpp  ,
where

TppTpp kkkk   1)( (6)

3.3. Virtual Generation
The virtual frontal view can be obtained using Equation (5).

After all virtual frontal components are generated, they are
integrated to form the virtual frontal image.

4. EXPERIMENTS

We conducted experiments on the 5 pose subsets of the CMU-
PIE database, which includes pose 29, 05 (turning le ft and right at 
22.5 degrees), 11, 37 (turning left and right at 45 degrees), and 27 
(near frontal) [8]. The generation of the virtual frontal views used
the leave-one-out strategy. In the final face recognition experiment,
a total of 68 subjects were used with the frontal facial images (pose
27) forming the gallery, while the non-frontal facial images were
used as probes to match against the frontal images in the gallery.

We implemented four different recognition modes: without 
preprocessing (i.e., using the original non-frontal image directly as
input), the global generation method (GLR) [7] , the local
generation method with uniform blocks (LLR) [7], and our
proposed component-based generation method.

4.1. Virtual View Generation (Visual Quality)
In Figure 4, we show some examples of virtual frontal view 

generation results. Column (a) shows the input non-frontal images,
column (b) the virtual frontal view generated by the global method
GLR, columns (c) and (d) the results produced by the local method
LLR with different block sizes, and column (e) the results
generated by the component-based method. The last column shows
the real frontal faces.

From these results, we can see that virtual generation using 
GLR is somewhat blurred; LLR can generate better results. In [7] ,
the authors obtained the best results with block size 20× 20.

875



          (a)              (b)             (c)            (d)           (e)             (f)

Input Ground truthGlobal 30×30 20×20 Component

Figure 4. Examples of virtual frontal view generation results
Global 30×30 20×20 Component

30.42 30.65 30.78 31.46

Figure 5. PSNR for virtual images

With the block size reduced to 10×10, the results became worse
due to blocking artifacts. Compared with LLR, our method can 
generate a smoother image with fewer blocking artifacts. Most 
important, the facial components are not broken into pieces.

4.2. Peak Signal-to-Noise Ratio
To evaluate the virtual generation accuracy quantitatively, we 

compute the Peak Signal-to-Noise Ratio (PSNR) value of the 
generated image with the ground truth frontal image. The PSNR is 
calculated by
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where ),( jiI  is the ground truth frontal image, ),(ˆ jiI  is the 
generated virtual frontal image, and w and h are the width and 
height of the image, respectively.

Figure 5 shows the PSNR values of different generated images. 
Our proposed method generated the best image.

4.3. Pose-invariant Face Recognition using Virtual Views
In this section, we describe the pose-invariant face recognition 

experiments we carried out on the virtual frontal views to evaluate
the proposed algorithm.

We implemented four different recognition modes: without 
preprocessing (original), the global generation method (GLR) [7] ,
the local generation method with uniform blocks (LLR) [7] (with 
block sizes of 30× 30 and 20× 20), and our proposed component-
based generation method. From Figure 6, it can be seen that our 
method outperformed others. In Table 1, we also show the
comparison of our method with the eigen light-field (ELF) method
[9] that is well known for recognizing faces across pose and
achieving good performance. Our method outperformed it.

5. CONCLUSIONS

Figure 6. Recognition rate comparison

Table 1. The performance comparison between our method and 
other methods.

Methods P05 P11 P29 P37
ELF [9] 88% 76% 86% 74%

LLR (20×20) [7] 91.2% 76.5% 95.6% 77.9%
Our method 98.5% 80.9% 98.5% 89.7%

In this paper, we proposed a component-based pose
normalization method for pose-invariant face recognition. The 
effectiveness of the proposed method was evaluated by face
recognition experiments on the CMU-PIE database. The
experimental results showed that partitioning facial images into
facial components is more meaningful than partitioning them into
uniform blocks , resulting in better pose normalization results in
both visual quality and recognition rate. 
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