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ABSTRACT 

Recently a new classification assumption was proposed in 
[1]. It assumed that the training samples of a particular class 
approximately form a linear basis for any test sample 
belonging to that class. The classification algorithm in [1] 
was based on the idea that all the correlated training samples 
belonging to the correct class are used to represent the test 
sample. The Lasso regularization was proposed to select the 
representative training samples from the entire training set 
(consisting of all the training samples). Lasso however tends 
to select a single sample from a group of correlated training 
samples and thus does not promote the representation of the 
test sample in terms of all the training samples from the 
correct group. To overcome this problem, we propose two 
alternate regularization methods, Elastic Net and Sum-Over-
l2-norm. Both these regularization methods favor the 
selection of multiple correlated training samples to represent 
the test sample. Experimental results on benchmark datasets 
show that our regularization methods give better recognition 
results compared to [1]. 

Index Terms— Classification, Face Recognition, 
Elastic Net, Group Sparse Regularization

1. INTRODUCTION 

Recently a new classifier was proposed in [1]. The work 
makes a novel classification assumption. It assumes that the 
training samples of a particular class approximately form a 
linear basis for a new test sample belonging to the same 
class. The classification algorithm built upon this 
assumption gave good recognition results on the Extended 
Yale B face recognition database [2].  

We can write the aforesaid assumption formally. If vk,test
is the test sample belonging to the kth class then, 

, ,1 ,1 ,2 ,2 , ,...
k kk test k k k k k n k nv v v vα α α ε= + + + +  (1) 

where vk,i are the training samples and � is the approximation 
error. 

In a classification problem, the training samples and 
their class labels are provided. The task is to assign the 
given test sample with the correct class label. This requires 
finding the coefficients �k,i in equation (1). In [1] the 
solution is framed as a sparse optimization problem. In this 

work we propose alternate solutions and show that our 
solutions give better results compared to the previous one 
[1]. 

Equation (1) expresses the assumption in terms of the 
training samples of a single class. Alternately, it can be 
expressed in terms of all the training samples so that 

,k testv Vα ε= +      (2) 
where 1,1 ,1 ,1 , ,1 ,[ | ... | | ... | | ... | | ... | ... | ]

k Cn k k n C C nV v v v v v v=

and 
11,1 1, ,1 , ,1 ,[ ... ... ... ... ... ] '

k Cn k k n C C nα α α α α α α= . 
There are two implications that follow from the 

assumption expressed in equation (2): 
1. The vector � should be sparse. 
2. All (or most of) the training samples corresponding 

to the correct class should have non-zero values in 
�.  

The above implications demand that � should be ‘group 
sparse’ - meaning that the solution of the inverse problem 
(2) should have non-zero coefficients corresponding to a 
particular group of correlated training samples and zero 
elsewhere. The solution in [1] is based on the first 
implication only. It imposes Lasso regularization on 
equation (2). Lasso promotes a sparse solution of � but does 
not favor grouping of correlated samples. Consequently the 
non-zero values in � do not necessarily correspond to 
training samples belonging to the same group. Our work 
proposes two alternate regularizations that promote group 
sparsity in �. Experimental evaluation shows that our 
method provides better recognition results compared to [1]. 

The rest of the paper will be organized into several 
sections. In section 2, we will discuss the background of the 
problem. Section 3 will detail our proposed methods. In 
section 4 we will show the experimental results. Finally in 
section 5, conclusions and future scope of work will be 
discussed.  

2. REVIEW OF PREVIOUS WORK 

The novel classification assumption was first proposed in 
[1]. The first step towards classification is to solve for the 
coefficient vector � in equation (2). The simplest solution to 
equation (2) involves the pseudo-inverse of V and is 
expressed as 1

,ˆ ( ' ) ' k testV V V vα −= . However, in most cases 
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the matrix V is ill-conditioned or ill-posed. So the simple 
solution involving the pseudo-inverse is not stable. 

To obtain a stable solution, one requires regularizing 
equation (2) in order to find an approximate stable solution. 
Since the solution α̂ should be sparse, an l0-norm regularizer 
is required and the following optimization problem needs to 
be solved 

0 , 2min || ||  such that || ||k testv V
α

α α ε− <   (3) 

In [1], it is argued that solving the l0-norm is an NP hard 
problem and there is no tractable algorithm to solve it. 
Citing studies in Compressive Sampling [3], they argued that 
for large systems the l0-norm can be replaced by the l1-norm 
(Lasso regularization) which also leads to a sparse solution. 

1 , 2min || ||  such that || ||k testv V
α

α α ε− <   (4) 

The optimization problem in equation (4) can be solved 
by quadratic programming methods.  

Once a sparse solution of � is obtained, the following 
classification algorithm was proposed to determine the class 
of the test sample. 

Algorithm 1
1. Solve the optimization problem expressed in (4). 
2. For each class i repeat the following two steps: 

a. Reconstruct a sample for each class by a 
linear combination of the training samples 
belonging to that class by the equation 

, ,
1

( )  
in

recon i j i j
j

v i vα
=

=� . 

b. Find the error between the reconstructed 
sample and the given test sample by 

, ( ) 2( , ) || ||test k test recon ierror v i v v= −   
3. Once the error for every class is obtained, choose the 

class having the minimum error as the class of the 
given test sample. 

l1-norm minimization leads to a sparse solution, but 
there are spurious coefficients in the vector � associated 
with the samples that do not belong to the class of the test 
sample. Step 2 is required to eliminate the effects of these 
coefficients. The coefficients in �i,j corresponding to each 
class i are used to reconstruct a sample. For each class the 
error between the reconstructed sample and the given test 
sample is calculated. The assumption in equation (1) says 
that the error between the reconstruction and the test sample 
will be the least for the correct class. Based on this 
assumption, the identity of the test sample is decided by the 
minimum error. 

3. PROPOSED CLASSIFICATION METHODS 

We mentioned in section 1 that the assumption in [1] leads 
to two implications. The previous work [1] based their 

solution on the first implication, i.e. on the sparsity of the 
solution. It did not account for the group sparsity of �. In 
this section we will introduce regularizations that make �
group sparse, i.e. it has non-zero coefficients corresponding 
to a particular group of correlated training samples and zero 
elsewhere.  

3.1. Disadvantage of Lasso Regularization 

There is a limitation to the Lasso (l1-norm) regularization. If 
there is a group of samples whose pair-wise correlations are 
very high, then Lasso tends to select one sample only from 
the group [5].  

In a classification problem, training samples belonging to 
the same class are correlated with each other. In such a 
situation the Lasso regularization proposed in [1] tends to 
select only a single training sample from the entire class. 
Thus, in the extreme case, the classifier in [1] becomes a 
scaled version of the Nearest Neighbour (NN) classifier. 

For explaining this effect of the Lasso regularization we 
rewrite the assumption expressed in equation (1): 

, ,1 ,1 ,2 ,2 , ,...
k kk test k k k k k n k nv v v vα α α ε= + + + +

where the vk’s belong to the same class and are correlated 
with each other. If algorithm 1 is employed for classifying 
the test sample, then (in the extreme case) we find that 

1. The Lasso regularization tends to select only one of 
the training samples from the group. We call it vk,best. 

2. Step 2 is repeated for each class. 
a. The reconstructed vector becomes a scaled 

version of the selected sample, i.e. 
, ,( )recon i best i bestv i vα= . 

b. The error from the reconstructed vector is 
calculated  

, , , 2( , ) || ||test k test i best i besterror v i v vα= − . 
3. The class with the minimum error is assumed to be 

the class of the test sample.  

The minimum Lasso error in step 2.b 
is , , , 2|| ||Lasso Lasso

k test k best k bestv vα− . In NN classification the criterion 
for choosing the class of the test sample 
is , , 2|| ||   j  class ik test i jv v− ∀ ∈ . This error is minimized 

when , ,
NN

i j k bestv v=  and is given by , , 2|| ||NN
k test k bestv v− . The 

Lasso error and the NN error are the same except for the 
scaling factor ( ,

Lasso
k bestα ). 

When the training samples are highly correlated (which 
generally is the case in classification), employing Lasso 
regularization forms a serious limitation to the sparse 
classification problem. Decision regarding the correct class 
of the test sample should depend on all the training samples 
belonging to a class. But Lasso favors selecting a single 
training sample. We look for alternate regularization 
methods to overcome this problem. 
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3.2. Elastic Net Regularization 

The problem of selecting a sparse group is studied in [5, 6] 
where an alternate regularization called ‘Elastic Net’ that 
promotes selection of sparse groups is proposed. We apply 
this regularization to the classification problem. 

We repeat the optimization problem used in [1] 
1 , 2min || ||  such that || ||k testv V

α
α α ε− <

This has the equivalent (Lasso) expression 
, 2 1min || ||  such that || ||k testv V

α
α α τ− <

The unconstrained form of Lasso regularization is 
, 2 1min || || || ||k testv V

α
α λ α− +    (5) 

To promote group sparsity, Elastic Net regularization, 
proposes the following optimization problem  

2
, 2 1 2 2 1min || || || || || ||k testv V

α
α λ α λ α− + +  (6)

The l1 penalty in the above expression promotes sparsity 
of the coefficient vector �, while the quadratic l2 penalty 
encourages grouping effect, i.e. selection of a group of 
correlated training samples. The combined effect of the 
mixed penalty term is that it enforces group-sparsity, i.e. the 
recovery of one or very few groups of correlated samples. 

The classification is performed by algorithm 1, but 
instead of solving the optimization problem in equation (4) 
we need to solve the problem in equation (6). The Elastic 
Net regularization problem was solved using the ‘elasticnet’ 
package [7]. 

3.3. Sum-Over-l2-norm Regularization 

In section 1, we mentioned two implications of the 
assumption expressed in equation (1). The Lasso exploits 
only the first implication while Elastic Net exploits both. 
The Elastic Net regularization is better than the Lasso in the 
sense that it promotes the selection of one or very few 
groups of samples. Elastic Net regularization however, does 
not exploit the labels of the training samples (columns of V). 
When the labels are known a stronger group sparsity 
constraint than the Elastic Net can be imposed. 

When the column labels of the matrix V is known, a 
stronger group sparsity promoting regularization [8, 9] can 
be employed 

1 2 2 2 2

, 2

,1 ,2 ,

min || || || || ... || ||  

such that || ||

where [ , ,..., ],  for i = 1,2,...,C
i

C

k test

i i i i n

v V
α

α ε
α α α

Α + Α + + Α

− <

Α =

 (7) 

The formulation is similar to the Elastic Net regularization. 
The l2-norm over the group of correlated variables (Ai’s) 
enforces the selection of the entire group of samples whereas 
the summation over the l2-norm (�Ai) enforces group 
sparsity, i.e. the selection of one or very few classes.  

The optimization problem (7) requires the label of each 
column in the matrix V, i.e. the class the column belongs to. 
In classification tasks, the labels of the training samples are 
always available, and hence we can use the Sum-Over-l2-
norm regularization (7) for our problem. We propose a 
slightly modified version of algorithm 1 in this case.  

Algorithm 2
1. Solve the optimization problem expressed in (7). 
2. Find those i’s for which ||Ai||2 > 0.  
3. For those classes i satisfying the condition in step 2, 

repeat the following two steps: 
a. Reconstruct a sample for each class by a 

linear combination of the training samples 
in that class via the equation 

, ,
1

( )  
in

recon i j i j
j

v i vα
=

=� . 

b. Find the error between the reconstructed 
sample and the given test sample by 

, ( ) 2( , ) || ||test k test recon ierror v i v v= −   

4. Once the ( , )testerror v i for every class i is obtained, 
choose the class having the minimum error as the 
class of the given test sample. 

The computational cost of algorithm 2 is less than 
algorithm 1, because step 3 is not repeated for all the 
classes. Instead we evaluate only those classes for which 
there are non-zero entries in the coefficient vector � (step 2). 

4. EXPERIMENTAL RESULTS 

We performed two sets of experiments. In the first set we 
apply the sparse classification algorithms on some 
benchmark databases from the University of California 
Irvine Machine Learning (UCI ML) repository [8]. 
Databases that do not have missing values in feature vectors 
or unlabeled training data were chosen.  

In the second set of experiments, we compared the 
recognition accuracy on the different sparse classifiers for 
the face recognition task on the Extended Yale B face 
database. The sparse classification algorithm [1] was 
originally proposed to address the face recognition problem. 

Table 1, shows the classification results on the UCI ML 
databases. The results are obtained by Leave-One-Out 
validation. We compare the classification algorithm in [1] 
against ours. We use the Nearest Neighbour (NN) classifier 
as a benchmark. 

Table 1: Recognition Accuracy of different methods 
Recognition Accuracy (%) Name of 

Dataset Lasso 
[1] 

Elastic 
Net 

Sum-Over-
l2-norm 

NN 

Page Block 94.78 95.32 95.66 93.34 
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Abalone 27.17 27.17 27.17 26.67 
Segmentation 96.31 94.09 94.09 96.31 
Yeast 57.75 58.23 58.94 57.71 
German Credit 69.32 72.67 74.54 74.54 
Tic-Tac-Toe 78.89 84.41 84.41 83.28 
Vehicle 65.58 72.34 73.86 73.86 
Australian Cr. 85.94 85.94 86.66 86.66 
Balance Scale 93.33 94.57 95.08 93.33 
Ionosphere 86.94 90.32 90.32 90.32 
Liver 66.68 69.04 70.21 69.04 
Ecoli 81.53 82.06 82.88 80.98 
Glass 68.43 69.11 70.19 68.43 
Wine 85.62 85.62 85.62 82.21 
Iris 96.00 96.00 96.00 96.00 
Lymphography 85.81 86.04 86.42 85.32 
Hayes Roth 40.23 41.01 41.01 33.33 
Satellite 80.30 80.30 82.37 77.00 
Haberman 40.52 43.28 43.28 57.40 

In Table 1, the best results for each dataset are 
highlighted in bold. Experiments were run on 19 datasets. 
Our proposed Sum-Over-l2-norm regularization gave the 
best results 17 times. Results from our Elastic Net 
regularization closely followed our Sum-Over-l2-norm 
regularization. The recognition results from the Lasso 
regularization [1] were better than our methods for one case 
(Segmentation).  

For the face recognition experiments, we repeat the 
experimental set-up in [1]. The experiments are carried on 
the Extended Yale B Face Database. For each subject, we 
randomly select half of the images for training and the other 
half for testing. Table 2 contains the results for face 
recognition. The features are selected using the Eigenface 
method. To compare our results with [1], we select the same 
number of Eigenfaces as proposed in [1]. 

Table 2: Recognition Accuracies on Extended Yale B 
Number of Eigenfaces Method 
30 56 120 504 

Lasso [1] 86.49 91.71 93.87 96.77 
Elastic Net 86.96 92.05 94.26 97.13 
Sum-Over-l2-
norm 

89.40 93.37 95.14 97.79 

NN 74.48 81.85 86.08 89.47 

The best recognition results are highlighted in bold. It is 
seen from Table 2 that our proposed Sum-Over-l2-norm 
regularization gives the best recognition results for any 
number of Eigenfaces selected. The Elastic Net 
regularization is little lower than the Sum-Over-l2-norm 
regularization but better than the Lasso.  

5. CONCLUSION 

A novel classification assumption: states that the training 
samples of a class approximately form a linear basis for any 
new test sample” was proposed in [1]. Based on this 
assumption, a classifier using Lasso regularization was built. 
We argued that the Lasso regularization is not an ideal 
choice for the classifier based on the aforesaid assumption as 
it selects one training sample only to form the basis. To 
select a basis with many training samples ,we proposed two 
alternate regularizations techniques, Elastic Net and Sum-
Over-l2-norm for selecting a group of samples. Results on 20 
different datasets (19 from the UCI ML repository and Yale 
Face Database) show that the sparse classifier based on our 
alternate regularizations yield better recognition results. 

The previous work [1] used the sparse classifier for face 
recognition only. We however, show that the sparse 
classifier can be used for general purpose classification tasks 
including face recognition. Using many benchmark datasets 
from the UCI ML repository, our proposed sparse classifiers 
is shown to consistently outperform the classifier in [1] and 
also the NN classifier (see Table 1). For face recognition 
tasks, our proposed methods, on average, yield around 2% 
and 11% better recognition accuracy than the classifier in [1] 
and NN respectively. 
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