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ABSTRACT
This paper proposes a novel methodology on Mercer kernel
construction using interpolatory strategy. Based on a given
symmetric and positive semi-definite matrix (Gram matrix)
and Cholesky decomposition, it first constructs a nonlinear
mapping Φ, which is well-defined on the training data. This
mapping is then extended to the whole input feature space by
utilizing Lagrange interpolatory basis functions. The kernel
function constructed by inner product is proven to be aMercer
kernel function. The self-constructed interpolatory Mercer
(IM) kernel keeps the Gram matrix unchanged on the train-
ing samples. To evaluate the performance of the proposed
IM kernel, a popular kernel direct linear discriminant analysis
(KDDA) method for face recognition is selected. Comparing
with RBF kernel based KDDAmethod on two face databases,
namely FERET and CMU PIE databases, the IM kernel based
KDDA approach could increase the performance by around
20% on CMU PIE database.

Index Terms— Mercer kernel, KDDA, Face recognition

1. INTRODUCTION

Over the past decade, positive semi-definite (Mercer) kernel
functions have been popularly applied to the areas of machine
learning [1]-[7]. The basic idea of kernel method is to apply a
nonlinear mappingΦ : x ∈ Rd → Φ(x) ∈ F to the input data
vector x and then to perform linear classifiers on the mapped
feature space F . However, its dimension could be arbitrarily
large and possibly infinite. Direct applying linear method to
feature space is impossible. Kernel trick can overcome this
obstacle and avoid using nonlinear mapping directly. The
inner products 〈Φ(xi), Φ(xj)〉F can be replaced with a ker-
nel function K(xi, xj), i.e. K(xi, xj) = 〈Φ(xi), Φ(xj)〉F ,
where xi, xj ∈ Rd are input pattern vectors. So the nonlinear
mapping Φ can be performed implicitly in input space Rd.
In kernel based approaches, kernel function can measure the
similarity between two pattern samples. The advantage of us-
ing Mercer kernel as a similarity measure is that it allows us
to construct algorithms in inner product spaces. Gram matrix,
also called kernel matrix, is generated by the inner product of

mapped training samples and thus can be calculated by a ker-
nel function. Gram matrix is a symmetric and positive semi-
definite matrix and plays very important role in kernel based
machine learning. The question is what kind of Gram ma-
trix is good for kernel based classifier? It is natural to hope
that the similarities are higher among within-class samples
and lower among between-class samples. However, the Gram
matrices, which are computed by the commonly used kernels
such as RBF/polynomial kernels on the training data, are full
matrices. It means that the between-class data possibly have
higher similarity and this leads to degrading the performance
of kernel based learning methods. So, it is reasonable to think
that such a kernel is a better kernel, if its Gram matrix gen-
erated from the the training data is a block diagonal matrix.
To overcome the drawback of commonly used RBF kernel,
this paper first exploits a RBF kernel to generate a symmetric
and positive definite block diagonal matrix K on the training
samples, and then utilizes Cholesky decomposition technique
to construct a feature mapping, which is just well-defined on
training data. The feature mapping is subsequently expanded
to the whole input space using Lagrange interpolatory strat-
egy. It is shown that our self-constructed interpolatory ker-
nel is indeed a Mercer kernel. The Gram matrix determined
by our IM kernel on the training data is exactly the previous
constructed block diagonal matrix K. To evaluate the perfor-
mance of our IM kernel, it is applied to KDDA for face recog-
nition. Comparingwith KDDAwith RBF kernel, KDDAwith
IM kernel gives superior performance.
The rest of this paper is organized as follows. Section

2 describes the details on IM kernel construction and theo-
retically shows our interpolatory kernel is a Mercer kernel.
Section 3 designs a IM kernel based KDDA algorithm. Sec-
tion 4 reports kernel performance comparisons on FERET and
CUM PIE databases by KDDA with IM kernel and RBF ker-
nel. Finally, the conclusions are drawn in section 5.

2. PROPOSEDMETHODOLOGY

This section proposes a theoretical framework on interpola-
tory Mercer kernel construction. Details are discussed below.
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2.1. Some notations

Let d and C be the dimension of input feature space and
the number of sample classes respectively, the total training
sample set X = {X1, X2, · · · , XC} ⊂ Rd, the ith class
Xi contains Ni samples, namely Xi = {xi

1, x
i
2, · · · , xi

Ni
},

i = 1, 2, · · · , C, N(=
∑C

i=1 Ni) be the total number of orig-
inal training samples. If Φ(x):x ∈ Rd → Φ(x) ∈ F is
the kernel nonlinear mapping, where F is the mapped feature
space, denote df = dimF , the total mapped sample set is
Φ(X) = {Φ(X1), Φ(X2), · · · , Φ(XC)}, and the ith mapped
class is Φ(Xi) = {Φ(xi

1), Φ(xi
2), · · · , Φ(xi

Ni
)}. If K(x, y)

is a Mercer defined on Rd ×Rd, then there exists a nonlinear
mapping Φ, such that K(x, y) = 〈Φ(x), Φ(y)〉F . We denote
RBF kernel KRBF (x, y) by KRBF (x, y) = exp (− ‖x−y‖2

t
)

with t > 0. Define matrices Ki = (ki
jk)Ni×Ni

∈ RNi×Ni ,
where ki

jk = KRBF (xi
j , x

i
k), i = 1, 2, . . . , C. So, Ki (i =

1, 2, . . . , C) all are symmetric and positive semi-definite ma-
trices. If let

K = diag{K1, . . . ,KC} ∈ RN×N , (1)

then K is a symmetric and positive semi-definite matrix as
well.

2.2. Cholesky decomposition

Let matrix K be the matrix define by (1). Since submatrices
Ki (i = 1, 2, . . . , C) are generated by RBF kernel and thus
are symmetric and positive semi-definite matrix.
By performing Cholesky decomposition on matrix Ki,

we have that Ki = UT
i Ui ∈ RNi×Ni , where Ui is a

unique Ni × Ni upper triangular matrix. Denote that U =
diag{U1, U2, · · · , UC} ∈ RN×N , then U is also a upper
triangular matrix. The Cholesky decomposition of matrix K
can be written as K = UT U ∈ RN×N . We rewrite matrix
U as U = [u1

1, · · · , u1
N1

|u2
1, · · · , u2

N2
| · · · |uC

1 , · · · , uC
NC

],
where ui

j ∈ RN is the (j +
∑C

k=1 Nk) column vector. Define
nonlinear feature mapping Φ on the training dataX set as:

Φ(xi
j) = ui

j ,where j = 1, 2, . . . , Ni and i = 1, 2, . . . , C.

(2)

2.3. Interpolatory strategy

By using interpolatory technique, this subsection will expend
the nonlinear mapping Φ(x) (see (2)), which is just well-
defined on training sample set, to the whole input space. To
this end, we define N Lagrange interpolatory basis functions
Li

j(x) as

Li
j(x) =

∏
(p,q) �=(i,j) ‖x − xp

q‖2∏
(p,q) �=(i,j) ‖x

i
j − x

p
q‖2

, x ∈ Rd.

Apparently, above interpolatory basis functions satisfy the
following property

Li
j(x

p
q) =

{
1, (p, q) = (i, j)
0, (p, q) �= (i, j)

, for all xp
q ∈ X.

Therefore, the nonlinear mapping Φ(x) can be expanded to
the whole input feature space Rd as follows:

Φ(x) =
C∑

i=1

Ni∑
j=1

Li
j(x)ui

j . (3)

2.4. Interpolatory Mercer kernel construction

Based on the nonlinear feature mapping defined in (3), we can
construct the kernel function on Rd × Rd below:

K(x, y)= 〈Φ(x), Φ(y)〉

= {

C∑
i=1

Ni∑
j=1

Li
j(x)ui

j}
T·{

C∑
p=1

Np∑
q=1

Lp
q(y)up

q}. (4)

Obviously, functionK(x, y) is a symmetric function. The fol-
lowing theorem 1 demonstrates that aboveK(x, y) is indeed
a Mercer kernel function.

Lemma. [8] If K(x, y) is a symmetric function defined on
Rd × Rd, and for any finite data set {y1, · · · , ym} ⊂ Rd, it
always yields a symmetric and positive semi-definite matrix
K= (kij)m×m, where kij = k(yi, yj), i, j = 1, 2, · · · , m,
then functionK(x, y) is a Mercer kernel function.

Theorem. FunctionK(x, y) defined by (4) is aMercer kernel
function.

Proof. We just need to show that K(x, y) is a positive semi-
definite function. To this end, we first denote a column vector
L(x) ∈ RN as following:

L(x) = [L1
1(x), · · · , L1

N1
(x)|, · · · , |LC

1 (x), · · · , LC
NC

(x)]T ,

then the functionK(x, y) can be written as

K(x, y) = (UL(x))T · (UL(y))

= L(x)T · (UT U) · L(y)

= L(x)T
KL(y).

For any finite training data set {xl|l=1, 2, · · · , n} ⊂ Rd,
the Gram matrixG generated by the kernel functionK(x, y)
on this n training data set is G = [K(xl, xs)]n×n, where
K(xl, xs) = L(xl)

T
KL(xs), l, s = 1, 2, ...n. Let Ln =

[L(xl),L(x2), · · · ,L(xn)]N×n, the Gram matrix G can be
written as G = L

T
nKLn. Thereby, G is a symmetric matrix.

As K is a positive semi-definite matrix, for all θ ∈ Rn, we
have

θT
Gθ = θT

L
T
nKLnθ = (Lnθ)T

K(Lnθ) ≥ 0.
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It means that Gram matrix G is a positive semi-definite ma-
trix. Hence by lemma 1, we know that K(x, y) is a Mercer
kernel.

It is not difficult to verify that the GrammatrixGX , which
is generated by our IM kernel (4) on the training data set X ,
is exactly the block diagonal positive semi-definite matrix K.
This indicates that the similarities among between-class data
are zeros, while the similarities among within-class data are
greater than zeros. Therefore, our IM kernel is good for mea-
suring the similarity between two samples and will enhance
the the classification power of Kernel based machine learning
approaches.

3. ALGORITHM DESIGN

Based on analysis in above sections, our IM-KDDA algorithm
is designed as follows.

Step 1: Construct symmetric and positive semi-definite
matrix K = diag{K1, . . . ,KC} ∈ RN×N , where
Ki = [KRBF (xi

j , x
i
k)]Ni×Ni

, xi
j , x

i
k ∈ Xi, and

KRBF (xi
j , x

i
k) = exp (

−‖xi
j−xi

k‖
2

t
).

Step 2: Let L(x) = [Li
j(x)] ∈ RN×1, where Li

j(x) are the
Lagrange intepolatory basis functions defined by

Li
j(x) =

∏
(p,q) �=(i,j) ‖x − xp

q‖2∏
(p,q) �=(i,j) ‖x

i
j − x

p
q‖2

,

xp
q ∈ Xp, x

i
j ∈ Xi.

Step 3: The interpolatory Mercer kernel is constructed as
K(x, y) = L

T (x)KL
T (x).

Step 4: KDDA [3] with IM kernel is performed for face
recognition.

Remark. In the above algorithm, if the value of some inter-
polatory basis function exceeds a given large threshold, then
its value is set to zero.

4. EXPERIMENTAL RESULTS

In this section, two databases, namely FERET and CMU PIE
databases, are selected to evaluate the performance of our
self-constructed IM kernel for kernel direct linear discrimi-
nant analysis algorithm.

4.1. Face image datasets

For FERET database, we select 120 people, 6 images for each
individual. Face image variations in FERET database include
pose, illumination, facial expression and aging. Images from
one individual are shown in Figure 1.

Fig. 1. Six images of one person on FERET dataset

CMU PIE face database, includes totally 68 people. There
are 13 pose variations ranged from full right profile image to
full left profile image and 43 different lighting conditions,
21 flashes with ambient light on or off. In our experiment,
for each people, we select 56 images including 13 poses
with neutral expression and 43 different lighting conditions
in frontal view. Several images of one people are shown in
Figure 2.

Fig. 2. Parts images of one person on CMU PIE

In above two face databases, all images are aligned with
the centers of eyes and mouth. The orientation of face is ad-
justed (on-the-plane rotation) such that the line joining the
centers of eyes is parallel with x-axis. Also, the original im-
ages with resolution 112x92 are reduced to wavelet feature
faces with resolution 30x25 after two-level D4 wavelet de-
composition.

4.2. Results on FERET dataset

This section reports the results of proposed IM-KDDA
method on FERET database. We randomly select n (n=2
to 5) images from each people for training , while the rest
(6−n) images of each individual are selected for testing. The
experiments are repeated 10 times and the average accuracies
are recorded in Table 1. It can be seen that the recognition
rate of KDDA with IM kernel increases from 73.06% with
training number 2 to 92.00% with training number 5, while
the recognition accuracy of KDDAwith RBF kernel increases
from 69.13% with training number 2 to 91.50% with training
number 5 respectively.
Comparing with KDDA with RBF kernel, KDDA with

our IM kernel gives around 2.81% entire mean accuracy im-
provement.
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Table 1. Average accuracy of rank 1 versus Training Number
(TN) on FERET database

TN 2 3 4 5
RBF Kernel 69.13% 80.89% 89.17% 91.50%
Our Kernel 73.06% 84.08% 90.33% 92.00%

Table 2. Average accuracy (%) of rank 1 versus Training
Number on CMU PIE database.

TN 5 6 7 8 9 10
RBF 67.51 68.11 70.79 72.34 72.74 72.91
Our 86.03 89.15 90.78 92.16 88.16 94.26

4.3. Results on CMU PIE dataset

The experimental setting on the CMU PIE database is similar
with that of FERET database. As the number of images for
each individual is 56, the number of training images is ranged
from 5 to 10. The experiments are repeated 10 times and the
average accuracy of KDDA with IM kernel is then calculated.
The average accuracy are recorded and tabulated in the last
row of Table 2. It can be seen from Table 2 that the recog-
nition accuracy of proposed method increases from 86.03%
with 5 training images to 94.26% with 10 training images.
The results are encouraging.

The same experiments are implemented by using KDDA
with RBF kernel function. The results are also recorded and
tabulated in Table 2. It can be seen that when 5 images are
used for training, the accuracy for KDDA with RBF kernel
is 67.51%. When the number of training images is equal to
10, the accuracy for RBF kernel based KDDA increases to
72.91%. Comparing with RBF based KDDA method, KDDA
with IM kernel gives around 19.36% entire average accuracy
improvement.

In the 10 repeated experiments with training number 9,
we found that the abnormal situations occurred in 2 times
running, namely the value of some interpolatory basis func-
tion exceeds a given large threshold and probably attains in-
finite. So, we set its value to zero in practice. The 10 times
mean accuracy with training number 9 is 88.16%. If exclud-
ing 2 abnormal cases, the mean accuracy of the rest 8 times
running improves to 93.84%. Comparing with RBF based
KDDA method, KDDA with IM kernel gives around 20.30%
entire mean accuracy improvement. It can be seen that our
IM kernel based KDDA approach gives the best performance
for all cases.

5. CONCLUSIONS

This paper proposed a novel framework on Mercer Kernel
construction using interpolatory strategy. Our IM kernel is
constructed using Cholesky decomposition technique and
then applied to KDDA for face recognition tasks. The results
are encouraging on FERET and CMU PIE face databases.
Comparing with RBK kernel based KDDA, experimental re-
sults show that the proposed self-constructed IM kernel based
KDDA algorithm gives the best performance.
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