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ABSTRACT

Many computer vision systems try to infer semantic informa-

tion about a video scene content by looking at the time series

of the silhouettes of the moving objects. This paper proposes

a new inter-frame feature set (signature) based on piecewise

surfacic descriptions of binary silhouettes. It captures the dy-

namics of moving objects and compacts it into a robust set of

features suitable for classification. To assess its ability to rep-

resent motion information, we use it to build a complete gait

recognition algorithm that we test on a database of 21 dif-

ferent subjects. To highlight the efficiency of our signature,

we use frontal views instead of side views of persons, which

is less discussed in literature and is considered to be harder

as the movement of legs is not visible. In that context, the

high recognition rates obtained (over 95% of correct identi-

fications) proves that our signature is appropriate to describe

moving objects.

Index Terms— Identification of persons, Surveillance, Pat-

tern recognition, Signal analysis, Video signal processing

1. INTRODUCTION

Automatic human motion analysis is a very active research

field in computer vision [1] and one of its most challenging

goals is the automatic identification of humans. The first step

of many motion analysis systems consists in the use of a back-

ground subtraction algorithm to extract time series of silhou-

ettes of the moving objects that are in the field of view of the

camera. If the silhouettes are tracked along multiple frames,

semantic information about the scene content can be inferred

by extracting and classifying a compact set of features, called

signature hereafter, from the moving silhouettes of each ob-

ject. Such a framework can be used for multiple purposes,

like human detection [2] or lip reading [3] but its most fa-

mous application is automatic gait recognition. Since its in-

troduction in [4], human identification through gait recogni-

tion has become popular. A major advantage of gait recogni-

tion towards other biometrics is that it can be achieved using
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images taken from a large distance of the users. Gait recog-

nition techniques might not be as precise as face recognition

algorithms but, while most face recognition techniques need

a constrained image of the person’s face to function properly

and thus require its cooperation, no user cooperation is nec-

essary to perform gait recognition. All in all, because of its

relative lack of precision, gait recognition is still best suited

to reinforce a decision made in a multi-modal biometric sys-

tem [5, 6].

Most gait recognition techniques use images captured from

the side of the persons. The so-called “lateral views” are be-

lieved to be the most suitable views. But their use in real in-

door conditions leads to serious operational issues. To capture

long sequences of walking persons from their side, cameras

have to be placed at a large distance. While it is manageable

in outdoor environments, it is more difficult indoor. In hall-

ways, it is often impossible to capture lateral view images. As

a consequence, the use of a frontal view is mandatory in most

hallways. Images captured from the front or the back of the

users are thought to be less appropriate. They introduce geo-

metric and scale transformations of the walkers that are absent

from the side view. Furthermore, on these views, the pendular

motion of the legs that is believed to contain a large amount

of information about the gait is less visible [7]. However, the

human ability to recognize walking people from behind sup-

ports the idea that building an automatic recognition scheme

is possible.

Gait signatures can be extracted using many types of fea-

tures: e.g. raw area of resized silhouettes [8], horizontal and

vertical projections [9], raw contours [10], or their Fourier de-

scriptors [11]. All these signatures have been used to recog-

nize walkers from a side view. However in [12], Soriano et al.
successfully recognized people from their gait using frontal-
view cameras only. They used series of Freeman encoding of

re-sized silhouette contours as a gait signature and obtained

high recognition rates on a small database (4 persons). The

use of the contour information is a source of noise in any

practical environment where the contour of the extracted sil-

houettes are often of poor quality due to inaccuracies inherent

to background subtraction algorithms. The use of a surfacic
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Fig. 1. Signature extraction from time series of silhouettes.

criterion is an option to increase the robustness. Furthermore,

the database used in [12] was too small to definitively con-

clude that the used signature was relevant enough.

This paper describes a new moving object signature based

on a morphological piecewise surfacic description of time se-

ries of silhouettes. To assess the relevance of our signature,

we use it as a the key component of a complete frontal view

gait recognition framework and test it on a database of 21 dif-

ferent persons.

The proposed new object signature is detailed in Section 2.

In Section 3, we describe and evaluate our complete gait

recognition algorithm. Section 4 concludes this paper.

2. DESIGN OF A MOVING OBJECT SIGNATURE

The inter-frame moving object signature is a temporal aggre-

gation of silhouette signatures. The whole process, as shown

on Figure 1, is described hereafter.

2.1. Intra-frame silhouette signature

Our intra-frame signature is based on a morphological oper-

ator called cover by rectangles that provides a piecewise sur-

facic description of the shape of the silhouettes. We have used

the cover by rectangles in [2] to extract information from sin-

gle silhouettes. Intuitively, the cover by rectangles C(S) of a

silhouette S is the set of all the largest non-redundant rectan-

gles that can be wedged inside of it (see Figure 2). Since the

rectangles of C(S) overlap each other, the description pro-

vided by C(S) is redundant (i.e. robust). On the other hand,

each rectangle of C(S) covers at least one pixel that is not

covered by any other rectangle of C(S). Consequently, the

use of C(S) ensures a robust description of the shape S with

a limited amount of redundancy.

Since the number of rectangles contained in C(S) can be

large (more than a thousand), it is impractical to use all the

rectangles directly as a set of features. We believe that most

of the information resides in the rectangle sizes distribution

densities. These densities can be estimated using a discrete

histogram whose bins correspond to the ratios of rectangles

that fall within given size intervals.

More precisely, we denote by α the number of rectangles of

C(S) (so α = �(C(S)) and index the rectangles of C(S) with

Fig. 2. The cover by rectangles of a silhouette is the union of

all the largest rectangles that can be wedged inside of it [2].

a parameter d so that Rd (d = 1, . . . , α) are the rectangles

of C(S). We also denote by wmax (resp. hmax) the width

(resp. height) of the widest (resp. tallest) rectangle of C(S).
Next, we build size distribution histograms and partition the

widths and the heights of the rectangles respectively into M

bins BW (i) and N bins BH(j)

BW (i) =
]
i
wmax

M
, (i + 1)

wmax

M

]
(1)

BH(j) =
]
j
hmax

N
, (j + 1)

hmax

N

]
(2)

where i = 0, . . . , M − 1 and j = 0, . . . , N − 1. Finally, the

normalized two-dimensional histogram SW×H

intra
(i, j) is de-

fined as

SW×H

intra
(i, j) =

1
α

�
{
Rd|wd ∈ BW (i), hd ∈ BH(j)

}
(3)

where wd and hd denote the width and the height of the rect-

angle Rd respectively.

SW×H

intra
(i, j) constitutes the set of features that we use as a

signature to characterize the information contained in a single

silhouette S.

2.2. Inter-frame signature update

To capture the dynamics of a moving object, we need an inter-

frame signature that handles time series of silhouettes.

854



Gait signature classification

by machine learning

Person’s identity

Gait signature extractionBackground subtraction

Video Frame

SW×H

inter
(i, j, t)S

Fig. 3. Architecture of the gait recognition algorithm.

Let t be the time of the current frame and SW×H

intra
(i, j, t)

be the signature of S at time t. A new inter-frame signature

SW×H

inter
is defined as the concatenation of L consecutive his-

tograms:

SW×H

inter
(i, j, t) =

{
SW×H

intra
(i, j, t− (L− 1)), . . . ,

SW×H

intra
(i, j, t− 1), SW×H

intra
(i, j, t)

}
(4)

The signature SW×H

inter
is updated frame by frame with the

silhouette histogram corresponding to the silhouette of the

current frame (see Figure 1). Note that this signature char-

acterizes the object dynamics of the L last frames.

In the following Section, we show how powerful

SW×H

inter
(i, j, t) is for frontal view gait recognition.

3. APPLICATION TO GAIT RECOGNITION

The purpose of the gait recognition algorithm described in

this Section is to infer the identity of the walking person. For

this application, we need to determine the appropriate values

for the parameters (M , N , and L) of SW×H

inter
(i, j, t) to capture

and classify the gait dynamics of a walking human.

3.1. Gait recognition algorithm

The architecture of the gait recognition algorithm is drawn in

Figure 3.

We extract the time series of binary silhouettes from the

video stream using a background subtraction algorithm called

Extended Gaussian Mixture Model, as proposed in [13]; this

algorithm is said to be adequate to deal with noisy sensors and

changing illumination. Then the signature of the object in the

current frame is computed and used to update the inter-frame

signature.

Finally SW×H

inter
(i, j, t) is used as the input of a machine

learning algorithm called extra-trees [14] whose purpose is

to classify the signature and to provide the identity of the per-

son. The extra-trees consist in a forest of independent deci-

sion trees. They are fast, accurate, and able to deal with the

high dimensionality of the feature space we use.

For consistency over time, we refine the output and use a

majority vote policy over the last V frames to smooth the re-

sults since the extra-trees might output a different class label

for each new frame.

3.2. Results

We now discuss the performances of the recognition algo-

rithm. It is worth noting that our signature is computation-

ally efficient enough to be used in real-time applications: the

whole recognition system runs real-time for standard resolu-

tion images (640× 480 pixels) on a conventional computer.

During preliminary tests, we have determined appropriate

values for the parameters of the method : the number of bins

M and N , the number of frames L aggregated in a single gait

signature, and the length V of the sliding temporal window

used for the majority vote.

Depending on the sizes of the silhouettes and on the size

of the training dataset, M and N should be comprised be-

tween 10 and 20. The use of values closer to 20 generally

leads to better recognition rates. However, large numbers of

large silhouettes (therefore with many rectangles) are needed

to populate a 20 × 20 bins histogram with appropriate statis-

tical significance.

The parameter L is adapted according to the framerate of

the cameras in order for the gait signature to contain at least a

complete gait cycle. Incorporating more gait cycles increases

the precision of the classification but also lowers the reactivity

of the system (note that the first estimate of the identity of the

walking person is given by the system after a delay of L + V
frames).

A similar reasoning applies to V (the number of frames

used for the majority vote). An increase of its value enhances

the stability of the results but also increases the recognition

system latency.

To assess the relevance of our gait signature and the per-

formances of the whole system, we have performed tests on

a database composed of series of 4 walking sequences of 21
different persons. This database contains frontal-view images

exclusively and it was built using a consumer market webcam.

Identification rates are shown on Figure 4. For high values

of V , the ratio of correct identifications can reach values as

high as 97%. We also see on Figure 4 that the choice of M =
N = 15 leads to better results that M = N = 20. The

small sizes of some silhouettes of the dataset might explain
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Fig. 4. Performances on a database of 21 persons.

this. When a person is far from the camera, his silhouettes are

too small to contain enough rectangles to correctly populate a

20× 20 bins histogram.

The high identification rates (over 95%) prove that our

intra-frame gait signature succeeds in capturing relevant in-

formation about the gait of a person.

4. CONCLUSIONS

This paper presents an innovative signature to characterize

time-series of binary silhouettes of a moving object. It is

based on a morphological operator called “cover by rectan-

gles”, and it consists in a temporal aggregation of piecewise

surfacic descriptions of silhouettes.

To evaluate the performances of our signature, we have

chosen to incorporate it in a gait recognition strategy, where it

is used to represent a moving object. During the evaluation, it

has appeared that, despite the general belief that lateral views

are better suited for gait recognition, it is possible to build a

system capable to work with front views. Moreover several

tests show that, with the help of our signature, the recognition

rates are close to 95% of correct identifications on a database

of 21 different humans.
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